β nbc-BASES FOR COHOMOLOGY OF LOCAL SYSTEMS ON HYPERPLANE COMPLEMENTS
نویسندگان
چکیده
We study cohomology with coefficients in a rank one local system on the complement of an arrangement of hyperplanes A. The cohomology plays an important role for the theory of generalized hypergeometric functions. We combine several known results to construct explicit bases of logarithmic forms for the only non-vanishing cohomology group, under some nonresonance conditions on the local system, for any arrangement A. The bases are determined by a linear ordering of the hyperplanes, and are indexed by certain “no-broken-circuits” bases of A. The basic forms depend on the local system, but any two bases constructed in this way are related by a matrix of integer constants which depend only on the linear orders and not on the local system. In certain special cases we show the existence of bases of monomial logarithmic forms.
منابع مشابه
Combinatorial Covers and Vanishing Cohomology
We use a Mayer–Vietoris-like spectral sequence to establish vanishing results for the cohomology of complements of linear and elliptic hyperplane arrangements, as part of a more general framework involving duality and abelian duality properties of spaces and groups. In the process, we consider cohomology of local systems with a general, Cohen– Macaulay-type condition. As a result, we recover kn...
متن کاملTriples of Arrangements and Local Systems
For a triple of complex hyperplane arrangements, there is a wellknown long exact sequence relating the cohomology of the complements. We observe that this result extends to certain local coefficient systems, and use this extension to study the characteristic varieties of arrangements. We show that the first characteristic variety may contain components that are translated by characters of any o...
متن کاملON GRADED LOCAL COHOMOLOGY MODULES DEFINED BY A PAIR OF IDEALS
Let $R = bigoplus_{n in mathbb{N}_{0}} R_{n}$ be a standardgraded ring, $M$ be a finitely generated graded $R$-module and $J$be a homogenous ideal of $R$. In this paper we study the gradedstructure of the $i$-th local cohomology module of $M$ defined by apair of ideals $(R_{+},J)$, i.e. $H^{i}_{R_{+},J}(M)$. Moreprecisely, we discuss finiteness property and vanishing of thegraded components $H^...
متن کاملThe equivariant spectral sequence and cohomology with local coefficients
In his pioneering work from the late 1940s, J.H.C. Whitehead established the category of CW-complexes as the natural framework for much of homotopy theory. A key role in this theory is played by the cellular chain complex of the universal cover of a connected CW-complex, which in turn is tightly connected to (co-)homology with local coefficients. In [8], we revisit these classical topics, drawi...
متن کاملTOP LOCAL COHOMOLOGY AND TOP FORMAL LOCAL COHOMOLOGY MODULES WITH SPECIFIED ATTACHED PRIMES
Let (R,m) be a Noetherian local ring, M be a finitely generated R-module of dimension n and a be an ideal of R. In this paper, generalizing the main results of Dibaei and Jafari [3] and Rezaei [8], we will show that if T is a subset of AsshR M, then there exists an ideal a of R such that AttR Hna (M)=T. As an application, we give some relationships between top local cohomology modules and top f...
متن کامل