A Fuzzy Classifier based on Product and Sum Aggregation Reasoning Rule
نویسندگان
چکیده
This paper proposes the algorithm ProSum to perform the supervised classification of the data. In the proposed algorithm data is fuzzified by using π–type membership function to give the feature belongingness of each pattern to each class. By using Product aggregation reasoning rule (PARR) and sum aggregation reasoning rule (SARR), the belongingness of each pattern to each class is determined. Finally by using defuzzification operation each pattern is assigned with the predicted class label. In this paper, proposed algorithm is applied to four dataset: IRIS, WINE, BUPA and PIMA. Accuracy of the results is measured by using the performance measures Misclassification (MC), Percentage of overall class Accuracy (PA) and Kappa Index of Agreement (KIA). The performance of ProSum is compared with C4.5 and PARR. General Terms Data mining classification, fuzzy classification
منابع مشابه
A novel fuzzy classifier based on product aggregation operator
The present article proposes a fuzzy set-based classifier with a better learning and generalization capability. The proposed classifier exploits the feature-wise degree of belonging of a pattern to all classes, generalization in the fuzzification process and the combined class-wise contribution of features effectively. The classifier uses a -type membership function and product aggregation reas...
متن کاملSUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS
This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from...
متن کاملVoltage Sag Compensation with DVR in Power Distribution System Based on Improved Cuckoo Search Tree-Fuzzy Rule Based Classifier Algorithm
A new technique presents to improve the performance of dynamic voltage restorer (DVR) for voltage sag mitigation. This control scheme is based on cuckoo search algorithm with tree fuzzy rule based classifier (CSA-TFRC). CSA is used for optimizing the output of TFRC so the classification output of the network is enhanced. While, the combination of cuckoo search algorithm, fuzzy and decision tree...
متن کاملNEW CRITERIA FOR RULE SELECTION IN FUZZY LEARNING CLASSIFIER SYSTEMS
Designing an effective criterion for selecting the best rule is a major problem in theprocess of implementing Fuzzy Learning Classifier (FLC) systems. Conventionally confidenceand support or combined measures of these are used as criteria for fuzzy rule evaluation. In thispaper new entities namely precision and recall from the field of Information Retrieval (IR)systems is adapted as alternative...
متن کاملRobust Potato Color Image Segmentation using Adaptive Fuzzy Inference System
Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013