A Bayesian latent group analysis for detecting poor effort in the assessment of malingering.

نویسندگان

  • Alonso Ortega
  • Eric-Jan Wagenmakers
  • Michael D Lee
  • Hans J Markowitsch
  • Martina Piefke
چکیده

Despite their theoretical appeal, Bayesian methods for the assessment of poor effort and malingering are still rarely used in neuropsychological research and clinical diagnosis. In this article, we outline a novel and easy-to-use Bayesian latent group analysis of malingering whose goal is to identify participants displaying poor effort when tested. Our Bayesian approach also quantifies the confidence with which each participant is classified and estimates the base rates of malingering from the observed data. We implement our Bayesian approach and compare its utility in effort assessment to that of the classic below-chance criterion of symptom validity testing (SVT). In two experiments, we evaluate the accuracy of both a Bayesian latent group analysis and the below-chance criterion of SVT in recovering the membership of participants assigned to the malingering group. Experiment 1 uses a simulation research design, whereas Experiment 2 involves the differentiation of patients with a history of stroke from coached malingerers. In both experiments, sensitivity levels are high for the Bayesian method, but low for the below-chance criterion of SVT. Additionally, the Bayesian approach proves to be resistant to possible effects of coaching. We conclude that Bayesian latent group methods complement existing methods in making more informed choices about malingering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trial 1 versus Trial 2 of the Test of Memory Malingering: Evaluating accuracy without a "gold standard".

This study examines the accuracy of the Test of Memory Malingering (TOMM), a frequently administered measure for evaluating effort during neurocognitive testing. In the last few years, several authors have suggested that the initial recognition trial of the TOMM (Trial 1) might be a more useful index for detecting feigned or exaggerated impairment than Trial 2, which is the source for inference...

متن کامل

Gender-based Differences in Associations between Attitude and Self-esteem with Smoking Behavior among Adolescents: A Secondary Analysis Applying Bayesian Nonparametric Functional Latent Variable Model

Background: Different patterns of gender-based relationships between attitude toward smoking and self-esteem with smoking behavior have reported. However, such associations may be much more complex than a simply supposed linear relationship. We aimed to propose a method of providing hand details on the total and gender-based scenarios of the relationships between attitude toward smoking and sel...

متن کامل

Application of Bayesian Latent Variable Model for Early Detection of Gestational Diabetes Mellitus Without A Perfect Reference Standard Test by β‐human Chorionic Gonadotropin

Background and Objectives: Gestational diabetes mellitus (GDM) is a medical problem in pregnancy, and its late diagnosis can cause adverse effects in the mother and fetus. The purpose of this research was to estimate the accuracy parameters of a biomarker for early prediction of gestational diabetes in the absence of a perfect reference standard test.   Methods: This study was conducted in 52...

متن کامل

Ethical issues associated with the assessment of exaggeration, poor effort, and malingering.

The use of effort tests is standard practice in forensic neuropsychology. There is a tremendous amount of good information available in test manuals and the research literature regarding the proper and responsible use of these tests. However, it is clear that there are numerous ethical issues and considerations associated with the assessment of exaggeration, poor effort, and malingering. Many o...

متن کامل

The Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data

The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Archives of clinical neuropsychology : the official journal of the National Academy of Neuropsychologists

دوره 27 4  شماره 

صفحات  -

تاریخ انتشار 2012