Lyapunov Method Based Online Identification of Nonlinear Systems Using Extreme Learning Machines

نویسندگان

  • Vijay Manikandan Janakiraman
  • Dennis Assanis
چکیده

Extreme Learning Machine (ELM) is an emerging learning paradigm for nonlinear regression problems and has shown its effectiveness in the machine learning community. An important feature of ELM is that the learning speed is extremely fast thanks to its random projection preprocessing step. This feature is taken advantage of in designing an online parameter estimation algorithm for nonlinear dynamic systems in this paper. The ELM type random projection and a nonlinear transformation in the hidden layer and a linear output layer is considered as a generalized model structure for a given nonlinear system and a parameter update law is constructed based on Lyapunov principles. Simulation results on a DC motor and Lorentz oscillator show that the proposed algorithm is stable and has improved performance over the online-learning ELM algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stable Rough Extreme Learning Machines for the Identification of Uncertain Continuous-Time Nonlinear Systems

‎Rough extreme learning machines (RELMs) are rough-neural networks with one hidden layer where the parameters between the inputs and hidden neurons are arbitrarily chosen and never updated‎. ‎In this paper‎, ‎we propose RELMs with a stable online learning algorithm for the identification of continuous-time nonlinear systems in the presence of noises and uncertainties‎, ‎and we prove the global ...

متن کامل

A Higher Order Online Lyapunov-Based Emotional Learning for Rough-Neural Identifiers

o enhance the performances of rough-neural networks (R-NNs) in the system identification‎, ‎on the base of emotional learning‎, ‎a new stable learning algorithm is developed for them‎. ‎This algorithm facilitates the error convergence by increasing the memory depth of R-NNs‎. ‎To this end‎, ‎an emotional signal as a linear combination of identification error and its differences is used to achie...

متن کامل

Stochastic gradient based extreme learning machines for stable online learning of advanced combustion engines

We propose and develop SG-ELM, a stable online learning algorithm based on stochastic gradients and Extreme Learning Machines (ELM). We propose SG-ELM particularly for systems that are required to be stable during learning; i.e., the estimated model parameters remain bounded during learning. We use a Lyapunov approach to prove both asymptotic stability of estimation error and boundedness in the...

متن کامل

Stochastic Gradient Based Extreme Learning Machines For Online Learning of Advanced Combustion Engines

In this article, a stochastic gradient based online learning algorithm for Extreme Learning Machines (ELM) is developed (SG-ELM). A stability criterion based on Lyapunov approach is used to prove both asymptotic stability of estimation error and stability in the estimated parameters suitable for identification of nonlinear dynamic systems. The developed algorithm not only guarantees stability, ...

متن کامل

Identification and Adaptive Position and Speed Control of Permanent Magnet DC Motor with Dead Zone Characteristics Based on Support Vector Machines

In this paper a new type of neural networks known as Least Squares Support Vector Machines which gained a huge fame during the recent years for identification of nonlinear systems has been used to identify DC motor with nonlinear dead zone characteristics. The identified system after linearization in each time span, in an online manner provide the model data for Model Predictive Controller of p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1211.1441  شماره 

صفحات  -

تاریخ انتشار 2012