A Self Organizing Map for Relation Extraction from Wikipedia using Structured Data Representations
نویسندگان
چکیده
In this work, we will report on the use of selforganizing maps (SOMs) in a clustering and relation extraction task. Specifically, we use the approach of self-organizing maps for structured data (SOMSDs) (i) for clustering music related articles from the free online encyclopedia Wikipedia and (ii) for extracting relations between the created clusters. We hereby rely on the bag-of-words similarity between individual articles on the one hand but additionally exploit the link structure between the articles on the other.
منابع مشابه
Landforms identification using neural network-self organizing map and SRTM data
During an 11 days mission in February 2000 the Shuttle Radar Topography Mission (SRTM) collected data over 80% of the Earth's land surface, for all areas between 60 degrees N and 56 degrees S latitude. Since SRTM data became available, many studies utilized them for application in topography and morphometric landscape analysis. Exploiting SRTM data for recognition and extraction of topographic ...
متن کاملSelf-Organizing Map Representation for Clustering Wikipedia Search Results
The article presents an approach to automated organization of textual data. The experiments have been performed on selected sub-set of Wikipedia. The Vector Space Model representation based on terms has been used to build groups of similar articles extracted from Kohonen Self-Organizing Maps with DBSCAN clustering. To warrant efficiency of the data processing, we performed linear dimensionality...
متن کاملA Modfied Self-organizing Map Neural Network to Recognize Multi-font Printed Persian Numerals (RESEARCH NOTE)
This paper proposes a new method to distinguish the printed digits, regardless of font and size, using neural networks.Unlike our proposed method, existing neural network based techniques are only able to recognize the trained fonts. These methods need a large database containing digits in various fonts. New fonts are often introduced to the public, which may not be truly recognized by the Opti...
متن کاملKohonen Self Organizing for Automatic Identification of Cartographic Objects
Automatic identification and localization of cartographic objects in aerial and satellite images have gained increasing attention in recent years in digital photogrammetry and remote sensing. Although the automatic extraction of man made objects in essence is still an unresolved issue, the man made objects can be extracted from aerial photos and satellite images. Recently, the high-resolution s...
متن کاملSelf-Organizing Maps for Time Series
We review a recent extension of the self-organizing map (SOM) for temporal structures with a simple recurrent dynamics leading to sparse representations, which allows an efficient training and a combination with arbitrary lattice structures. We discuss its practical applicability and its theoretical properties. Afterwards, we put the approach into a general framework of recurrent unsupervised m...
متن کامل