Deformations of Azumaya Algebras

نویسنده

  • PAUL BRESSLER
چکیده

In this paper we compute the deformation theory of a special class of algebras, namely of Azumaya algebras on a manifold (C or complex analytic). Deformation theory of associative algebras was initiated by Gerstenhaber in [G]. A deformation of an associative algebra A over an Artinian ring a is an a-linear associative algebra structure on A⊗ a such that, for the maximal ideal m of a, A ⊗ m is an ideal, and the quotient algebra on A is the original one. Gerstenhaber showed that the Hochschild cochain complex of an associative algebra A has a structure of a differential graded Lie algebra (DGLA), and that deformations of A over an Artinian ring a are classified by Maurer-Cartan elements of the DGLA C(A,A)[1] ⊗ m. A Maurer-Catan element of a DGLA L with the differential δ is by definition an element λ of L satisfying

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Azumaya Monads and Comonads

The definition of Azumaya algebras over commutative rings R requires the tensor product of modules over R and the twist map for the tensor product of any two R-modules. Similar constructions are available in braided monoidal categories, and Azumaya algebras were defined in these settings. Here, we introduce Azumaya monads on any category A by considering a monad (F,m, e) on A endowed with a dis...

متن کامل

Quasi-elementary H-Azumaya Algebras Arising from Generalized (Anti) Yetter-Drinfeld Modules

Let H be a Hopf algebra with bijective antipode, α, β ∈ AutHopf (H) and M a finite dimensional (α, β)-Yetter-Drinfeld module. We prove that End(M) endowed with certain structures becomes an H-Azumaya algebra, and the set of H-Azumaya algebras of this type is a subgroup of BQ(k,H), the Brauer group of H .

متن کامل

The Differential Azumaya Algebras and Non-commutative Picard–Vessiot Cocycles

A differential Azumaya algebra, and in particular a differential matrix algebra, over a differential field K with constants C is trivialized by a Picard–Vessiot (differential Galois) extension E. This yields a bijection between isomorphism classes of differential algebras and Picard–Vessiot cocycles Z(G(E/K), PGLn(C)) which cobound in Z (G(E/K), PGLn(E)).

متن کامل

Azumaya Structure on D-branes and Deformations and Resolutions of a Conifold Revisited: Klebanov-strassler-witten vs. Polchinski-grothendieck

In this sequel to [L-Y1], [L-L-S-Y], and [L-Y2] (respectively arXiv:0709.1515 [math.AG], arXiv:0809.2121 [math.AG], and arXiv:0901.0342 [math.AG]), we study a D-brane probe on a conifold from the viewpoint of the Azumaya structure on D-branes and toric geometry. The details of how deformations and resolutions of the standard toric conifold Y can be obtained via morphisms from Azumaya points are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006