Kinetic, inhibition and structural studies on 3-oxoacyl-ACP reductase from Plasmodium falciparum, a key enzyme in fatty acid biosynthesis.
نویسندگان
چکیده
Type II fatty acid biosynthesis represents an attractive target for the discovery of new antimalarial drugs. Previous studies have identified malarial ENR (enoyl acyl-carrier-protein reductase, or FabI) as the target for the antiseptic triclosan. In the present paper, we report the biochemical properties and 1.5 A (1 A=0.1 nm) crystal structure of OAR (3-oxoacyl acyl-carrier-protein reductase, or FabG), the second reductive step in fatty acid biosynthesis and its inhibition by hexachlorophene. Under optimal conditions of pH and ionic strength, Plasmodium falciparum OAR displays kinetic properties similar to those of OAR from bacteria or plants. Activity with NADH is <3% of that with NADPH. Fluorescence enhancement studies indicate that NADPH can bind to the free enzyme, consistent with kinetic and product inhibition studies suggesting a steady-state ordered mechanism. The crystal structure reveals a tetramer with a sulphate ion bound in the cofactor-binding site such that the side chains of the catalytic triad of serine, tyrosine and lysine are aligned in an active conformation, as previously observed in the Escherichia coli OAR-NADP+ complex. A cluster of positively charged residues is positioned at the entrance to the active site, consistent with the proposed recognition site for the physiological substrate (3-oxoacyl-acyl-carrier protein) in E. coli OAR. The antibacterial and anthelminthic agent hexachlorophene is a potent inhibitor of OAR (IC50 2.05 microM) displaying non-linear competitive inhibition with respect to NADPH. Hexachlorophene (EC50 6.2 microM) and analogues such as bithionol also have antimalarial activity in vitro, suggesting they might be useful leads for further development.
منابع مشابه
Slow-tight-binding inhibition of enoyl-acyl carrier protein reductase from Plasmodium falciparum by triclosan.
Triclosan is a potent inhibitor of FabI (enoyl-ACP reductase, where ACP stands for acyl carrier protein), which catalyses the last step in a sequence of four reactions that is repeated many times with each elongation step in the type II fatty acid biosynthesis pathway. The malarial parasite Plasmodium falciparum also harbours the genes and is capable of synthesizing fatty acids by utilizing the...
متن کاملDecarboxylation of malonyl-(acyl carrier protein) by 3-oxoacyl-(acyl carrier protein) synthases in plant fatty acid biosynthesis.
In order to identify regulatory steps in fatty acid biosynthesis, the influence of intermediate 3-oxoacyl-(acyl carrier proteins) (3-oxoacyl-ACPs) and end-product acyl-ACPs of the fatty acid synthase reaction on the condensation reaction was investigated in vitro, using total fatty acid synthase preparations and purified 3-oxoacyl-ACP synthases (KASs; EC 2.3.1.41) from Cuphea lanceolata seeds. ...
متن کاملIn silico screening for Plasmodium falciparum enoyl-ACP reductase inhibitors
The need for novel therapeutics against Plasmodium falciparum is urgent due to recent emergence of multi-drug resistant malaria parasites. Since fatty acids are essential for both the liver and blood stages of the malarial parasite, targeting fatty acid biosynthesis is a promising strategy for combatting P. falciparum. We present a combined computational and experimental study to identify novel...
متن کاملEnzyme Mechanism and Slow-Onset Inhibition of Plasmodium falciparum Enoyl-Acyl Carrier Protein Reductase by an Inorganic Complex
Malaria continues to be a major cause of children's morbidity and mortality worldwide, causing nearly one million deaths annually. The human malaria parasite, Plasmodium falciparum, synthesizes fatty acids employing the Type II fatty acid biosynthesis system (FAS II), unlike humans that rely on the Type I (FAS I) pathway. The FAS II system elongates acyl fatty acid precursors of the cell membra...
متن کامل3-Oxoacyl-(acyl-carrier protein) reductase from avocado (Persea americana) fruit mesocarp.
The NADPH-linked 3-oxoacyl-(acyl-carrier protein) (ACP) reductase (EC 1.1.1.100), also known as 'beta-ketoacyl-ACP reductase', has been purified from the mesocarp of mature avocado pears (Persea americana). The enzyme is inactivated by low ionic strength and low temperature. On SDS/PAGE under reducing conditions, purified 3-oxoacyl-ACP reductase migrated as a single polypeptide giving a molecul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 393 Pt 2 شماره
صفحات -
تاریخ انتشار 2006