The Most Probable Bayesian Network and Beyond
نویسنده
چکیده
This doctoral dissertation introduces an algorithm for constructing the most probable Bayesian network from data for small domains. The algorithm is used to show that a popular goodness criterion for the Bayesian networks has a severe sensitivity problem. The dissertation then proposes an information theoretic criterion that avoids the problem. Computing Reviews (1998)
منابع مشابه
Learning Bayesian Network Structure using Markov Blanket in K2 Algorithm
A Bayesian network is a graphical model that represents a set of random variables and their causal relationship via a Directed Acyclic Graph (DAG). There are basically two methods used for learning Bayesian network: parameter-learning and structure-learning. One of the most effective structure-learning methods is K2 algorithm. Because the performance of the K2 algorithm depends on node...
متن کاملAbstraction for Ef ciently Computing Most Probable Explanations in Bayesian Networks
ion for Ef ciently Computing Most Probable Explanations in Bayesian Networks Ole J. Mengshoel Carnegie Mellon University NASA Ames Research Center Mail Stop 269-3 Moffett Field, CA 94035 [email protected]
متن کاملDynamic Safety Analysis CNG Stations Using Fault Tree Approach and Bayesian Network
Introduction: The safety of CNG stations is important because of their location in urban areas, as well as to prevent accidents and to protect the safety of personnel, property, and environment. An event occurrence analysis with probability updating is the key to dynamic safety analysis. Methods and materials: In this study, the Failure Modes and Effects Analysis (FMEA) technique was used to d...
متن کاملRisk Analysis of Operating Room Using the Fuzzy Bayesian Network Model
To enhance Patient’s safety, we need effective methods for risk management. This work aims to propose an integrated approach to risk management for a hospital system. To improve patient’s safety, we should develop flexible methods where different aspects of risk and type of information are taken into consideration. This paper proposes a fuzzy Bayesian network to model and analyze risk in the op...
متن کاملUncertainty Modeling of a Group Tourism Recommendation System Based on Pearson Similarity Criteria, Bayesian Network and Self-Organizing Map Clustering Algorithm
Group tourism is one of the most important tasks in tourist recommender systems. These systems, despite of the potential contradictions among the group's tastes, seek to provide joint suggestions to all members of the group, and propose recommendations that would allow the satisfaction of a group of users rather than individual user satisfaction. Another issue that has received less attention i...
متن کامل