Hybrid Microscopy: Enabling Inexpensive High-Performance Imaging through Combined Physical and Optical Magnifications

نویسندگان

  • Yu Shrike Zhang
  • Jae-Byum Chang
  • Mario Moisés Alvarez
  • Grissel Trujillo-de Santiago
  • Julio Aleman
  • Byambaa Batzaya
  • Vaishali Krishnadoss
  • Aishwarya Aravamudhan Ramanujam
  • Mehdi Kazemzadeh-Narbat
  • Fei Chen
  • Paul W. Tillberg
  • Mehmet Remzi Dokmeci
  • Edward S. Boyden
  • Ali Khademhosseini
چکیده

To date, much effort has been expended on making high-performance microscopes through better instrumentation. Recently, it was discovered that physical magnification of specimens was possible, through a technique called expansion microscopy (ExM), raising the question of whether physical magnification, coupled to inexpensive optics, could together match the performance of high-end optical equipment, at a tiny fraction of the price. Here we show that such "hybrid microscopy" methods--combining physical and optical magnifications--can indeed achieve high performance at low cost. By physically magnifying objects, then imaging them on cheap miniature fluorescence microscopes ("mini-microscopes"), it is possible to image at a resolution comparable to that previously attainable only with benchtop microscopes that present costs orders of magnitude higher. We believe that this unprecedented hybrid technology that combines expansion microscopy, based on physical magnification, and mini-microscopy, relying on conventional optics--a process we refer to as Expansion Mini-Microscopy (ExMM)--is a highly promising alternative method for performing cost-effective, high-resolution imaging of biological samples. With further advancement of the technology, we believe that ExMM will find widespread applications for high-resolution imaging particularly in research and healthcare scenarios in undeveloped countries or remote places.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combined AFM and confocal fluorescence microscope for applications in bio-nanotechnology.

We present a custom-designed atomic force fluorescence microscope (AFFM), which can perform simultaneous optical and topographic measurements with single molecule sensitivity throughout the whole visible to near-infrared spectral region. Integration of atomic force microscopy (AFM) and confocal fluorescence microscopy combines the high-resolution topographical imaging of AFM with the reliable (...

متن کامل

Ultrahigh resolution photoacoustic microscopy via transient absorption

We have developed a novel, hybrid imaging modality, Transient Absorption Ultrasonic Microscopy (TAUM), which takes advantage of the optical nonlinearities afforded by transient absorption to achieve ultrahigh-resolution photoacoustic microscopy. The theoretical point spread function for TAUM is functionally equivalent to confocal and two-photon fluorescence microscopy, potentially enabling cell...

متن کامل

Multiscale imaging of human thyroid pathologies using integrated Optical Coherence Tomography (OCT) and Optical Coherence Microscopy (OCM)

We evaluate the feasibility of optical coherence tomography (OCT) and optical coherence microscopy (OCM) for imaging of benign and malignant thyroid lesions ex vivo using intrinsic optical contrast. Thirty four thyroid gland specimens were imaged from 17 patients, covering a spectrum of pathology, ranging from normal thyroid to neoplasia and benign disease. The integrated OCT and OCM imaging sy...

متن کامل

Super-resolution laser scanning microscopy through spatiotemporal modulation.

Super-resolution optical microscopy has attracted great interest among researchers in many fields, especially in biology where the scale of physical structures and molecular processes fall below the diffraction limit of resolution for light. As one of the emerging techniques, structured illumination microscopy can double the resolution by shifting unresolvable spatial frequencies into the pass-...

متن کامل

High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events

A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016