Evaluation of Magnetic Nanoparticle-Labeled Chondrocytes Cultivated on a Type II Collagen–Chitosan/Poly(Lactic-co-Glycolic) Acid Biphasic Scaffold

نویسندگان

  • Juin-Yih Su
  • Shi-Hui Chen
  • Yu-Pin Chen
  • Wei-Chuan Chen
چکیده

Chondral or osteochondral defects are still controversial problems in orthopedics. Here, chondrocytes labeled with magnetic nanoparticles were cultivated on a biphasic, type II collagen-chitosan/poly(lactic-co-glycolic acid) scaffold in an attempt to develop cultures with trackable cells exhibiting growth, differentiation, and regeneration. Rabbit chondrocytes were labeled with magnetic nanoparticles and characterized by scanning electron microscopy (SEM), transmission electron (TEM) microscopy, and gene and protein expression analyses. The experimental results showed that the magnetic nanoparticles did not affect the phenotype of chondrocytes after cell labeling, nor were protein and gene expression affected. The biphasic type II collagen-chitosan/poly(lactic-co-glycolic) acid scaffold was characterized by SEM, and labeled chondrocytes showed a homogeneous distribution throughout the scaffold after cultivation onto the polymer. Cellular phenotype remained unaltered but with increased gene expression of type II collagen and aggrecan, as indicated by cell staining, indicating chondrogenesis. Decreased SRY-related high mobility group-box gene (Sox-9) levels of cultured chondrocytes indicated that differentiation was associated with osteogenesis. These results are encouraging for the development of techniques for trackable cartilage regeneration and osteochondral defect repair which may be applied in vivo and, eventually, in clinical trials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comparative study of the chondrogenic potential between synthetic and natural scaffolds in an in vivo bioreactor

The clinical demand for cartilage tissue engineering is potentially large for reconstruction defects resulting from congenital deformities or degenerative disease due to limited donor sites for autologous tissue and donor site morbidities. Cartilage tissue engineering has been successfully applied to the medical field: a scaffold pre-cultured with chondrocytes was used prior to implantation in ...

متن کامل

The use of fibrin and poly(lactic-co-glycolic acid) hybrid scaffold for articular cartilage tissue engineering: an in vivo analysis.

Our preliminary results indicated that fibrin and poly(lactic-co-glycolic acid) (PLGA) hybrid scaffold promoted early chondrogenesis of articular cartilage constructs in vitro. The aim of this study was to evaluate in vivo cartilaginous tissue formation by chondrocyte-seeded fibrin/PLGA hybrid scaffolds. PLGA scaffolds were soaked carefully, in chondrocyte-fibrin suspension, and polymerized by ...

متن کامل

Effects of Ultrasound Irradiation on the Release Profile of 5-fluorouracil from Magnetic Polylactic co-glycolic Acid Nanocapsules

Background: Drug nano-carriers are one of the most important tools for targeted cancer therapy so that undesired side effects of chemotherapy drugs are minimized. In this area, the use of ultrasound can be helpful in controlling drug release from nanoparticles to achieve higher treatment efficiency.Objective: Here, we studies the effects of ultrasound irradiation on the release profile of 5-flu...

متن کامل

An Overview of the Application of Poly(lactic-co-glycolic) Acid (PLGA)-Based Scaffold for Drug Delivery in Cartilage Tissue Engineering

Poly(lactic-co-glycolic) acid (PLGA) has attracted a considerable amount of interest for biomedical application due to its biocompatibility, tailored biodegradation rate (depending on the molecular weight and copolymer ratio), approval for clinical use in humans by the U.S. Food and Drug Administration (FDA), the potential to change surface properties to create better interaction with biologica...

متن کامل

The influence of different nanostructured scaffolds on fibroblast growth

Skin serves as a protective barrier, modulating body temperature and waste discharge. It is therefore desirable to be able to repair any damage that occurs to the skin as soon as possible. In this study, we demonstrate a relatively easy and cost-effective method for the fabrication of nanostructured scaffolds, to shorten the time taken for a wound to heal. Various scaffolds consisting of nanohe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2017