A Fast Fourier Algorithm on the Rotation Group

نویسندگان

  • Daniel Potts
  • Jürgen Prestin
  • Antje Vollrath
چکیده

In this paper we present an algorithm for the fast Fourier transform on the rotation group SO(3) which is based on the fast Fourier transform for nonequispaced nodes on the three-dimensional torus. This algorithm allows to evaluate the SO(3) Fourier transform of B-band-limited functions at M arbitrary input nodes in O(M +B3 logB) flops instead of O(MB3). Some numerical results will be presented establishing the algorithm’s numerical stability and time requirements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Algorithm for the Nonequispaced Fast Fourier Transform on the Rotation Group

We develop an approximate algorithm to efficiently calculate the discrete Fourier transform on the rotation group SO(3). Our method needs O ( L3 logL log(1/ε) + log(1/ε)3Q ) arithmetic operations for a degree-L transform at Q nodes free of choice and with desired accuracy ε. Our main contribution is a method that allows to replace finite expansions in Wigner-d functions of arbitrary orders with...

متن کامل

Stability Results for Scattered Data Interpolation on the Rotation Group

Abstract. Fourier analysis on the rotation group SO(3) expands each function into the orthogonal basis of Wigner-D functions. Recently, fast and reliable algorithms for the evaluation of finite expansion of such type, referred to as nonequispaced FFT on SO(3), have become available. Here, we consider the minimal norm interpolation of given data by Wigner-D functions. We prove bounds on the cond...

متن کامل

FFTs on the Rotation Group

Earlier work by Driscoll and Healy [4] has produced an efficient O(B log B) algorithm for computing the Fourier transform of band-limited functions on the 2-sphere. In this paper, we discuss an implementation of an O(B) algorithm for the numerical computation of Fourier transforms of functions defined on the rotation group, SO(3). This compares with the direct O(B) approach. The algorithm we im...

متن کامل

The Radon Transform on SO(3): A Fourier Slice Theorem and Numerical Inversion

The inversion of the one–dimensional Radon transform on the rotation group SO(3) is an ill posed inverse problem which applies to X–ray tomography with polycrystalline materials. This communication presents a novel approach to the numerical inversion of the one–dimensional Radon transform on SO(3). Based on a Fourier slice theorem the discrete inverse Radon transform of a function sampled on th...

متن کامل

A new shape retrieval method using the Group delay of the Fourier descriptors

In this paper, we introduced a new way to analyze the shape using a new Fourier based descriptor, which is the smoothed derivative of the phase of the Fourier descriptors. It is extracted from the complex boundary of the shape, and is called the smoothed group delay (SGD). The usage of SGD on the Fourier phase descriptors, allows a compact representation of the shape boundaries which is robust ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007