Computation of Harmonic Weak Maass Forms
نویسندگان
چکیده
Harmonic weak Maass forms of half-integral weight are the subject of many recent works. They are closely related to Ramanujan’s mock theta functions, their theta lifts give rise to Arakelov Green functions, and their coefficients are often related to central values and derivatives of Hecke L-functions. We present an algorithm to compute harmonic weak Maass forms numerically, based on the automorphy method due to Hejhal and Stark. As explicit examples we consider harmonic weak Maass forms of weight 1/2 associated to the elliptic curves 11a1, 37a1, 37b1. We made extensive numerical computations and the data we obtained is presented in the final section of the paper. We expect that experiments based on our data will lead to a better understanding of the arithmetic properties of the Fourier coefficients.
منابع مشابه
Differential Operators and Harmonic Weak Maass Forms
For integers k ≥ 2, we study two differential operators on harmonic weak Maass forms of weight 2 − k. The operator ξ2−k (resp. D) defines a map to the space of weight k cusp forms (resp. weakly holomorphic modular forms). We leverage these operators to study coefficients of harmonic weak Maass forms. Although generic harmonic weak Maass forms have transcendental coefficients, we show that those...
متن کاملDifferential Operators for Harmonic Weak Maass Forms and the Vanishing of Hecke Eigenvalues
For integers k ≥ 2, we study two differential operators on harmonic weak Maass forms of weight 2 − k. The operator ξ2−k (resp. D) defines a map to the space of weight k cusp forms (resp. weakly holomorphic modular forms). We leverage these operators to study coefficients of harmonic weak Maass forms. Although generic harmonic weak Maass forms are expected to have transcendental coefficients, we...
متن کاملAlgebraic Formulas for the Coefficients of Half-integral Weight Harmonic Weak Maass Forms
We prove that the coefficients of certain weight −1/2 harmonic Maass forms are “traces” of singular moduli for weak Maass forms. To prove this theorem, we construct a theta lift from spaces of weight −2 harmonic weak Maass forms to spaces of weight −1/2 vectorvalued harmonic weak Maass forms on Mp2(Z), a result which is of independent interest. We then prove a general theorem which guarantees (...
متن کاملHeegner Divisors, L-functions and Harmonic Weak Maass Forms
Recent works, mostly related to Ramanujan’s mock theta functions, make use of the fact that harmonic weak Maass forms can be combinatorial generating functions. Generalizing works of Waldspurger, Kohnen and Zagier, we prove that such forms also serve as “generating functions” for central values and derivatives of quadratic twists of weight 2 modular L-functions. To obtain these results, we cons...
متن کاملLocally Harmonic Maass Forms and the Kernel of the Shintani Lift
In this paper we define a new type of modular object and construct explicit examples of such functions. Our functions are closely related to cusp forms constructed by Zagier [37] which played an important role in the construction by Kohnen and Zagier [26] of a kernel function for the Shimura and Shintani lifts between half-integral and integral weight cusp forms. Although our functions share ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Experimental Mathematics
دوره 21 شماره
صفحات -
تاریخ انتشار 2012