Enhanced locomotor adaptation aftereffect in the "broken escalator" phenomenon using anodal tDCS.

نویسندگان

  • D Kaski
  • S Quadir
  • M Patel
  • N Yousif
  • A M Bronstein
چکیده

The everyday experience of stepping onto a stationary escalator causes a stumble, despite our full awareness that the escalator is broken. In the laboratory, this "broken escalator" phenomenon is reproduced when subjects step onto an obviously stationary platform (AFTER trials) that was previously experienced as moving (MOVING trials) and attests to a process of motor adaptation. Given the critical role of M1 in upper limb motor adaptation and the potential for transcranial direct current stimulation (tDCS) to increase cortical excitability, we hypothesized that anodal tDCS over leg M1 and premotor cortices would increase the size and duration of the locomotor aftereffect. Thirty healthy volunteers received either sham or real tDCS (anodal bihemispheric tDCS; 2 mA for 15 min at rest) to induce excitatory effects over the primary motor and premotor cortex before walking onto the moving platform. The real tDCS group, compared with sham, displayed larger trunk sway and increased gait velocity in the first AFTER trial and a persistence of the trunk sway aftereffect into the second AFTER trial. We also used transcranial magnetic stimulation to probe changes in cortical leg excitability using different electrode montages and eyeblink conditioning, before and after tDCS, as well as simulating the current flow of tDCS on the human brain using a computational model of these different tDCS montages. Our data show that anodal tDCS induces excitability changes in lower limb motor cortex with resultant enhancement of locomotor adaptation aftereffects. These findings might encourage the use of tDCS over leg motor and premotor regions to improve locomotor control in patients with neurological gait disorders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced locomotor adaptation after - effect in the ‘ broken escalator ’ phenomenon using 1 anodal tDCS

26 The everyday experience of stepping onto a stationary escalator causes a stumble, despite our full awareness 27 that the escalator is broken. In the laboratory, this 'broken escalator' phenomenon is reproduced when 28 subjects step onto an obviously stationary platform (AFTER trials) that was previously experienced as moving 29 (MOVING trials), and attests to a process of motor adaptation. G...

متن کامل

Locomotor adaptation and aftereffects in patients with reduced somatosensory input due to peripheral neuropathy.

We studied 12 peripheral neuropathy patients (PNP) and 13 age-matched controls with the "broken escalator" paradigm to see how somatosensory loss affects gait adaptation and the release and recovery ("braking") of the forward trunk overshoot observed during this locomotor aftereffect. Trunk displacement, foot contact signals, and leg electromyograms (EMGs) were recorded while subjects walked on...

متن کامل

Locomotor adaptation is modulated by observing the actions of others.

Observing the motor actions of another person could facilitate compensatory motor behavior in the passive observer. Here we explored whether action observation alone can induce automatic locomotor adaptation in humans. To explore this possibility, we used the "broken escalator" paradigm. Conventionally this involves stepping upon a stationary sled after having previously experienced it actually...

متن کامل

Modulating locomotor adaptation with cerebellar stimulation.

Human locomotor adaptation is necessary to maintain flexibility of walking. Several lines of research suggest that the cerebellum plays a critical role in motor adaptation. In this study we investigated the effects of noninvasive stimulation of the cerebellum to enhance locomotor adaptation. We found that anodal cerebellar transcranial direct current stimulation (tDCS) applied during adaptation...

متن کامل

Different Current Intensities of Anodal Transcranial Direct Current Stimulation Do Not Differentially Modulate Motor Cortex Plasticity

Transcranial direct current stimulation (tDCS) is a noninvasive technique that modulates the excitability of neurons within the motor cortex (M1). Although the aftereffects of anodal tDCS on modulating cortical excitability have been described, there is limited data describing the outcomes of different tDCS intensities on intracortical circuits. To further elucidate the mechanisms underlying th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 107 9  شماره 

صفحات  -

تاریخ انتشار 2012