Support Vector Machines for Speaker Verification and Identification
نویسندگان
چکیده
In this paper the performance of the support vector machine (SVM) on a speaker verification task is assessed. Since speaker verification requires binary decisions, support vector machines seem to be a promising candidate to perform the task. A new technique for normalising the polynomial kernel is developed and used to achieve performance comparable to other classifiers on the YOHO database. We also present results on a speaker identification task.
منابع مشابه
Speaker Identification and Verification Using Support Vector Machines and Sparse Kernel Logistic Regression
In this paper we investigate two discriminative classification approaches for frame-based speaker identification and verification, namely Support Vector Machine (SVM) and Sparse Kernel Logistic Regression (SKLR). SVMs have already shown good results in regression and classification in several fields of pattern recognition as well as in continuous speech recognition. While the non-probabilistic ...
متن کاملText-independent speaker verification using support vector machines
In this article we address the issue of using the Support Vector Learning technique in combination with the currently well performing Gaussian Mixture Models (GMM) for speaker verification experiments. Support Vector Machines (SVM) is a new and very promising technique in statistical learning theory. Recently this technique produced very interesting results in image processing [1] [2] [3], and ...
متن کاملIdentification and Adaptive Position and Speed Control of Permanent Magnet DC Motor with Dead Zone Characteristics Based on Support Vector Machines
In this paper a new type of neural networks known as Least Squares Support Vector Machines which gained a huge fame during the recent years for identification of nonlinear systems has been used to identify DC motor with nonlinear dead zone characteristics. The identified system after linearization in each time span, in an online manner provide the model data for Model Predictive Controller of p...
متن کاملComparison between factor analysis and GMM support vector machines for speaker verification
We present a comparison between speaker verification systems based on factor analysis modeling and support vector machines using GMM supervectors as features. All systems used the same acoustic features and they were trained and tested on the same data sets. We test two types of kernel (one linear, the other non-linear) for the GMM support vector machines. The results show that factor analysis ...
متن کامل