The Caenorhabditis elegans spe-38 gene encodes a novel four-pass integral membrane protein required for sperm function at fertilization.
نویسندگان
چکیده
A mutation in the Caenorhabditis elegans spe-38 gene results in a sperm-specific fertility defect. spe-38 sperm are indistinguishable from wild-type sperm with regards to their morphology, motility and migratory behavior. spe-38 sperm make close contact with oocytes but fail to fertilize them. spe-38 sperm can also stimulate ovulation and engage in sperm competition. The spe-38 gene is predicted to encode a novel four-pass (tetraspan) integral membrane protein. Structurally similar tetraspan molecules have been implicated in processes such as gamete adhesion/fusion in mammals, membrane adhesion/fusion during yeast mating, and the formation/function of tight-junctions in metazoa. In antibody localization experiments, SPE-38 was found to concentrate on the pseudopod of mature sperm, consistent with it playing a direct role in gamete interactions.
منابع مشابه
The Immunoglobulin-like Gene spe-45 Acts during Fertilization in Caenorhabditis elegans like the Mouse Izumo1 Gene
The Caenorhabditis elegans spe-9 class genes, which show specific or predominant expression in the male germline, are indispensable for fertilization [1, 2]. However, due to the rapid evolution of genes involved in reproduction, we do not currently know if there are spe-9 class genes in mammals that play similar roles during fertilization to those found in C. elegans. In mice, the Izumo1 gene e...
متن کاملspe-29 encodes a small predicted membrane protein required for the initiation of sperm activation in Caenorhabditis elegans.
Caenorhabditis elegans spermatids complete a dramatic morphogenesis to crawling spermatozoa in the absence of an actin- or tubulin-based cytoskeleton and without synthesizing new gene products. Mutations in three genes (spe-8, spe-12, and spe-27) prevent the initiation of this morphogenesis, termed activation. Males with mutations in any of these genes are fertile. By contrast, mutant hermaphro...
متن کاملMutation of a putative sperm membrane protein in Caenorhabditis elegans prevents sperm differentiation but not its associated meiotic divisions
Spermatogenesis in the nematode Caenorhabditis elegans uses unusual organelles, called the fibrous body-membranous organelle (FB-MO) complexes, to prepackage and deliver macromolecules to spermatids during cytokinesis that accompanies the second meiotic division. Mutations in the spe-4 (spermatogenesis-defective) gene disrupt these organelles and prevent cytokinesis during spermatogenesis, but ...
متن کاملThe C. elegans spe-9 Gene Encodes a Sperm Transmembrane Protein that Contains EGF-like Repeats and Is Required for Fertilization
In the nematode worm C. elegans, individuals with mutations in the spe-9 gene produce spermatozoa with wild-type morphology and motility that cannot fertilize oocytes even after contact between gametes. Therefore, disruption of spe-9 function affects either gamete recognition, adhesion, signaling, and/or fusion. The spe-9 gene encodes a sperm transmembrane protein with an extracellular domain t...
متن کاملspe-10 encodes a DHHC-CRD zinc-finger membrane protein required for endoplasmic reticulum/Golgi membrane morphogenesis during Caenorhabditis elegans spermatogenesis.
C. elegans spermatogenesis employs lysosome-related fibrous body-membranous organelles (FB-MOs) for transport of many cellular components. Previous work showed that spe-10 mutants contain FB-MOs that prematurely disassemble, resulting in defective transport of FB components into developing spermatids. Consequently, spe-10 spermatids are smaller than wild type and contain defective FB-MO derivat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 132 12 شماره
صفحات -
تاریخ انتشار 2005