Ectopic Runx1 Expression Rescues Tal-1-Deficiency in the Generation of Primitive and Definitive Hematopoiesis
نویسندگان
چکیده
The transcription factors SCL/Tal-1 and AML1/Runx1 control the generation of pluripotent hematopoietic stem cells (pHSC) and, thereby, primitive and definitive hematopoiesis, during embryonic development of the mouse from mesoderm. Thus, Runx1-deficient mice generate primitive, but not definitive hematopoiesis, while Tal-1-deficient mice are completely defective. Primitive as well as definitive hematopoiesis can be developed "in vitro" from embryonic stem cells (ESC). We show that wild type, as well as Tal-1(-/-) and Runx1(-/-) ESCs, induced to differentiation, all expand within 5 days to comparable numbers of Flk1(+) mesodermal cells. While wild type ESCs further differentiate to primitive and definitive erythrocytes, to c-fms(+)Gr1(+)Mac1(+) myeloid cells, and to B220(+)CD19(+) B- and CD4(+)/CD8(+) T-lymphoid cells, Runx1(-/-) ESCs, as expected, only develop primitive erythrocytes, and Tal-1(-/-) ESCs do not generate any hematopoietic cells. Retroviral transduction with Runx1 of Runx1(-/-) ESCs, differentiated for 4 days to mesoderm, rescues definitive erythropoiesis, myelopoiesis and lymphopoiesis, though only with 1-10% of the efficiencies of wild type ESC hematopoiesis. Surprisingly, Tal-1(-/-) ESCs can also be rescued at comparably low efficiencies to primitive and definitive erythropoiesis, and to myelopoiesis and lymphopoiesis by retroviral transduction with Runx1. These results suggest that Tal-1 expression is needed to express Runx1 in mesoderm, and that ectopic expression of Runx1 in mesoderm is sufficient to induce primitive as well as definitive hematopoiesis in the absence of Tal-1. Retroviral transduction of "in vitro" differentiating Tal-1(-/-) and Runx1(-/-) ESCs should be a useful experimental tool to probe selected genes for activities in the generation of hematopoietic progenitors "in vitro", and to assess the potential transforming activities in hematopoiesis of mutant forms of Tal-1 and Runx1 from acute myeloid leukemia and related tumors.
منابع مشابه
Ectopic expression of TAL-1 protein in Ly-6E.1-htal-1 transgenic mice induces defects in B- and T-lymphoid differentiation.
The tal-1 gene encodes a basic helix-loop-helix (bHLH) transcription factor required for primitive and definitive hematopoiesis. Additionally, ectopic activation of the tal-1 gene during T lymphopoiesis occurs in numerous cases of human T-cell acute lymphoblastic leukemia. With the use of transgenic mice, we show that, in adult hematopoiesis, constitutive expression of TAL-1 protein causes diso...
متن کاملHEMATOPOIESIS AND STEM CELLS Runx1 is involved in primitive erythropoiesis in the mouse
Targeted disruption of the Runx1/ AML1 gene in mice has demonstrated that it is required for the emergence of definitive hematopoietic cells but that it is not essential for the formation of primitive erythrocytes. These findings led to the conclusion that Runx1 is a stage-specific transcription factor acting only during definitive hematopoiesis. However, the zebrafish and Xenopus homologs of R...
متن کاملRunx1 is involved in primitive erythropoiesis in the mouse.
Targeted disruption of the Runx1/ AML1 gene in mice has demonstrated that it is required for the emergence of definitive hematopoietic cells but that it is not essential for the formation of primitive erythrocytes. These findings led to the conclusion that Runx1 is a stage-specific transcription factor acting only during definitive hematopoiesis. However, the zebrafish and Xenopus homologs of R...
متن کاملAML1/Runx1 rescues Notch1-null mutation-induced deficiency of para-aortic splanchnopleural hematopoiesis.
The Notch1-RBP-Jkappa and the transcription factor Runx1 pathways have been independently shown to be indispensable for the establishment of definitive hematopoiesis. Importantly, expression of Runx1 is down-regulated in the para-aortic splanchnopleural (P-Sp) region of Notch1- and Rbpsuh-null mice. Here we demonstrate that Notch1 up-regulates Runx1 expression and that the defective hematopoiet...
متن کاملCBFb and RUNX1 are required at 2 different steps during the development of hematopoietic stem cells in zebrafish
Hematopoietic development is evolutionarily conserved among vertebrates. Similar to mammals, zebrafish embryos undertake sequential waves of hematopoiesis at distinct locations during embryonic development. The first wave is primitive hematopoiesis, in which erythroid progenitors arise from the posterior lateral mesoderm and form at later stages the intermediate cell mass, where erythroblasts a...
متن کامل