Inverse Uniqueness Results for One-dimensional Weighted Dirac Operators

نویسندگان

  • JONATHAN ECKHARDT
  • ALEKSEY KOSTENKO
  • GERALD TESCHL
چکیده

Given a one-dimensional weighted Dirac operator we can define a spectral measure by virtue of singular Weyl–Titchmarsh–Kodaira theory. Using the theory of de Branges spaces we show that the spectral measure uniquely determines the Dirac operator up to a gauge transformation. Our result applies in particular to radial Dirac operators and extends the classical results for Dirac operators with one regular endpoint. Moreover, our result also improves the currently known results for canonical (Hamiltonian) systems. If one endpoint is in the limit circle case, we also establish corresponding twospectra results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse Problem for Interior Spectral Data of the Dirac Operator with Discontinuous Conditions

In this paper, we study the inverse problem for Dirac differential operators with  discontinuity conditions in a compact interval. It is shown that the potential functions can be uniquely determined by the value of the potential on some interval and parts of two sets of eigenvalues. Also, it is shown that the potential function can be uniquely determined by a part of a set of values of eigenfun...

متن کامل

A Uniqueness Theorem of the Solution of an Inverse Spectral Problem

This paper is devoted to the proof of the unique solvability ofthe inverse problems for second-order differential operators withregular singularities. It is shown that the potential functioncan be determined from spectral data, also we prove a uniquenesstheorem in the inverse problem.

متن کامل

Uniqueness Theorems in Inverse Spectral Theory for One-dimensional Schrödinger Operators

New unique characterization results for the potential V (x) in connection with Schrödinger operators on R and on the half-line [0,∞) are proven in terms of appropriate Krein spectral shift functions. Particular results obtained include a generalization of a well-known uniqueness theorem of Borg and Marchenko for Schrödinger operators on the half-line with purely discrete spectra to arbitrary sp...

متن کامل

Weyl–titchmarsh M-function Asymptotics, Local Uniqueness Results, Trace Formulas, and Borg-type Theorems for Dirac Operators

We explicitly determine the high-energy asymptotics for Weyl– Titchmarsh matrices associated with general Dirac-type operators on half-lines and on R. We also prove new local uniqueness results for Dirac-type operators in terms of exponentially small differences of Weyl–Titchmarsh matrices. As concrete applications of the asymptotic high-energy expansion we derive a trace formula for Dirac oper...

متن کامل

P Uniqueness of Non{symmetric Diiusion Operators with Singular Drift Coeecients I. the Nite{dimensional Case Mailing Address

Two uniqueness results for C0 semigroups on weighted Lp spaces over Rn generated by operators of type + r with singular drift are proven. A key ingredient in the proofs is the veri cation of some kind of \weak Kato inequality" which seems to break down exactly for those drift singularities where Lp uniqueness breaks down as well. 3 Lp uniqueness of non{symmetric di usion operators with singular...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013