A single polymorphic residue within the peptide-binding cleft of MHC class I molecules determines spectrum of tapasin dependence.

نویسندگان

  • Boyoun Park
  • Sungwook Lee
  • Euijae Kim
  • Kwangseog Ahn
چکیده

Different HLA class I alleles display a distinctive dependence on tapasin for surface expression and Ag presentation. In this study, we show that the tapasin dependence of HLA class I alleles correlates to the nature of the amino acid residues present at the naturally polymorphic position 114. The tapasin dependence of HLA class I alleles bearing different residues at position 114 decreases in the order of acidity, with high tapasin dependence for acidic amino acids (aspartic acid and glutamic acid), moderate dependence for neutral amino acids (asparagine and glutamine), and low dependence for basic amino acids (histidine and arginine). A glutamic acid to histidine substitution at position 114 allows the otherwise tapasin-dependent HLA-B4402 alleles to load high-affinity peptides independently of tapasin and to have surface expression levels comparable to the levels seen in the presence of tapasin. The opposite substitution, histidine to glutamic acid at position 114, is sufficient to change the HLA-B2705 allele from the tapasin-independent to the tapasin-dependent phenotype. Furthermore, analysis of point mutants at position 114 reveals that tapasin plays a principal role in transforming the peptide-binding groove into a high-affinity, peptide-receptive conformation. The natural polymorphisms in HLA class I H chains that selectively affect tapasin-dependent peptide loading provide insights into the functional interaction of tapasin with MHC class I molecules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two Polymorphisms Facilitate Differences in Plasticity between Two Chicken Major Histocompatibility Complex Class I Proteins

Major histocompatibility complex class I molecules (MHC I) present peptides to cytotoxic T-cells at the surface of almost all nucleated cells. The function of MHC I molecules is to select high affinity peptides from a large intracellular pool and they are assisted in this process by co-factor molecules, notably tapasin. In contrast to mammals, MHC homozygous chickens express a single MHC I gene...

متن کامل

Distinct assembly profiles of HLA-B molecules.

MHC class I polymorphisms are known to influence outcomes in a number of infectious diseases, cancers, and inflammatory diseases. Human MHC class I H chains are encoded by the HLA-A, HLA-B, and HLA-C genes. These genes are highly polymorphic, with the HLA-B locus being the most variable. Each HLA class I protein binds to a distinct set of peptide Ags, which are presented to CD8(+) T cells. HLA-...

متن کامل

Selector function of MHC I molecules is determined by protein plasticity

The selection of peptides for presentation at the surface of most nucleated cells by major histocompatibility complex class I molecules (MHC I) is crucial to the immune response in vertebrates. However, the mechanisms of the rapid selection of high affinity peptides by MHC I from amongst thousands of mostly low affinity peptides are not well understood. We developed computational systems models...

متن کامل

Redox-regulated export of the major histocompatibility complex class I-peptide complexes from the endoplasmic reticulum.

In contrast to the fairly well-characterized mechanism of assembly of MHC class I-peptide complexes, the disassembly mechanism by which peptide-loaded MHC class I molecules are released from the peptide-loading complex and exit the endoplasmic reticulum (ER) is poorly understood. Optimal peptide binding by MHC class I molecules is assumed to be sufficient for triggering exit of peptide-filled M...

متن کامل

Interaction of murine MHC class I molecules with tapasin and TAP enhances peptide loading and involves the heavy chain alpha3 domain.

In human cells the association of MHC class I molecules with TAP is thought to be mediated by a third protein termed tapasin. We now show that tapasin is present in murine TAP-class I complexes as well. Furthermore, we demonstrate that a mutant H-2Dd molecule that does not interact with TAP due to a Glu to Lys mutation at residue 222 of the H chain (Dd(E222K)) also fails to bind to tapasin. Thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 170 2  شماره 

صفحات  -

تاریخ انتشار 2003