A Gelfand Model for Wreath Products

نویسندگان

  • RON M. ADIN
  • YUVAL ROICHMAN
چکیده

A Gelafand model for wreath products Zr ≀ Sn is constructed. The proof relies on a combinatorial interpretation of the characters of the model, extending a classical result of Frobenius and Schur.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zonal polynomials for wreath products

The pair of groups, symmetric group S2n and hyperoctohedral group Hn , form a Gelfand pair. The characteristic map is a mapping from the graded algebra generated by the zonal spherical functions of (S2n, Hn) into the ring of symmetric functions. The images of the zonal spherical functions under this map are called the zonal polynomials. A wreath product generalization of the Gelfand pair (S2n, ...

متن کامل

G(`, k, d)-MODULES VIA GROUPOIDS

In this note we describe a seemingly new approach to the complex representation theory of the wreath product G o Sd where G is a finite abelian group. The approach is motivated by an appropriate version of Schur-Weyl duality. We construct a combinatorially defined groupoid in which all endomorphism algebras are direct products of symmetric groups and prove that the groupoid algebra is isomorphi...

متن کامل

Gelfand-kirillov Conjecture for Symplectic Reflection Algebras

We construct functorially a class of algebras using the formalism of double derivations. These algebras extend to higher dimensions Crawley-Boevey and Holland’s construction of deformed preprojective algebras and encompass symplectic reflection algebras associated to wreath products. We use this construction to show that the quotient field of a symplectic reflection algebra is “rational”, confi...

متن کامل

WREATH PRODUCT GENERALIZATIONS OF THE TRIPLE (S2n, Hn, φ) AND THEIR SPHERICAL FUNCTIONS

The symmetric group S2n and the hyperoctaheadral group Hn is a Gelfand triple for an arbitrary linear representation φ of Hn. Their φ-spherical functions can be caught as transition matrix between suitable symmetric functions and the power sums. We generalize this triplet in the term of wreath product. It is shown that our triplet are always to be a Gelfand triple. Furthermore we study the rela...

متن کامل

Crested Products of Markov Chains

In this work we define two kinds of crested product for reversible Markov chains, which naturally appear as a generalization of the case of crossed and nested product, as in association schemes theory, even if we do a construction that seems to be more general and simple. Although the crossed and nested product are inspired by the study of Gelfand pairs associated with the direct and the wreath...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008