A new class of high capacity cation-disordered oxides for rechargeable lithium batteries: Li–Ni–Ti–Mo oxides†

نویسندگان

  • Jinhyuk Lee
  • Dong-Hwa Seo
  • Mahalingam Balasubramanian
  • Nancy Twu
  • Xin Li
  • Gerbrand Ceder
چکیده

Recent successes with disordered Li-excess materials and applications of percolation theory have highlighted cation-disordered oxides as high capacity and energy density cathode materials. In this work, we present a new class of high capacity cation-disordered oxides, lithium-excess nickel titanium molybdenum oxides, which deliver capacities up to 250 mA h g!1. These materials were designed from percolation theory which predicts lithium diffusion to become facile in cation-disordered oxides as the lithium-excess level increases (x 4 1.09 in LixTM2!xO2). The reversible capacity and rate capability in these compounds are shown to considerably improve with lithium excess. In particular, Li1.2Ni1/3Ti1/3Mo2/15O2 delivers up to 250 mA h g !1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Template-Free Synthesis of Interconnected Hollow Carbon Nanospheres for High-Performance Anode Material in Lithium-Ion Batteries

The ever-increasing demand for rechargeable batteries in some newly emerging portable electronic devices, advanced medical devices, and in particular, electric vehicles and hybrid electric vehicles has sparked research efforts in developing lithium ion batteries (LIBs) with high storage capacity and excellent rate performance. [ 1 ] Graphite, the mainstay of anode materials for commercialized L...

متن کامل

P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries

Most P2-type layered oxides exhibit Na(+)/vacancy-ordered superstructures because of strong Na(+)-Na(+) interaction in the alkali metal layer and charge ordering in the transition metal layer. These superstructures evidenced by voltage plateaus in the electrochemical curves limit the Na(+) ion transport kinetics and cycle performance in rechargeable batteries. Here we show that such Na(+)/vacan...

متن کامل

Understanding and Controlling Anionic Electrochemical Activity in High-Capacity Oxides for Next Generation Li-Ion Batteries

Rechargeable Li-ion batteries with higher energy density are in urgent demand to address the global challenge of energy storage. In comparison with anode materials, the relatively low capacity of cathode oxides, which exhibit classical cationic redox activity, has become one of the major bottlenecks to reach higher energy density. Recently, anionic activity, such as oxygen redox reaction, has b...

متن کامل

High‐Performance Heterostructured Cathodes for Lithium‐Ion Batteries with a Ni‐Rich Layered Oxide Core and a Li‐Rich Layered Oxide Shell

The Ni-rich layered oxides with a Ni content of >0.5 are drawing much attention recently to increase the energy density of lithium-ion batteries. However, the Ni-rich layered oxides suffer from aggressive reaction of the cathode surface with the organic electrolyte at the higher operating voltages, resulting in consequent impedance rise and capacity fade. To overcome this difficulty, we present...

متن کامل

La2O3 hollow nanospheres for high performance lithium-ion rechargeable batteries.

An efficient and simple protocol for synthesis of novel La(2)O(3) hollow nanospheres of size about 30 ± 2 nm using polymeric micelles is reported. The La(2)O(3) hollow nanospheres exhibit high charge capacity and cycling performance in lithium-ion rechargeable batteries (LIBs), which was scrutinized for the first time among the rare-earth oxides.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015