Morphology of Electrospun Nylon-6 Nanofibers as a Function of Molecular Weight and Processing Parameters

نویسندگان

  • Satyajeet S. Ojha
  • Mehdi Afshari
  • Richard Kotek
  • Russell E. Gorga
چکیده

In the present study, the morphology and mechanical properties of nylon-6 nanofibers were investigated as a function of molecular weight (30,000, 50,000, and 63,000 g/mol) and electrospinning process conditions (solution concentration, voltage, tip-to-collector distance, and flow rate). Scanning electron micrographs (SEM) of nylon-6 nanofibers showed that the diameter of the electrospun fiber increased with increasing molecular weight and solution concentration. An increase in molecular weight increases the density of chain entanglements (in solution) at the same polymer concentration; hence, the minimum concentration to produce nanofibers was lower for the highest molecular weight nylon-6. The morphology of electrospun fibers also depended on tip-to-collector distance and applied voltage concentration of polymer solution as observed from the SEM images. Trends in fiber diameter and diameter distribution are discussed for each processing variable. Mechanical properties of electrospun nonwoven mats showed an increase in tensile strength and modulus as a function of increasing molecular weight. ! 2007 Wiley Periodicals, Inc. J Appl Polym Sci 108: 308–319, 2008

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication, characterization, and microscopic imaging of Fe2O3-modified electrospun nanofibers

This study explored the fabrication, characterization, and microscopic imaging of highly porous electrospun nanofibers based on pure and Fe2O3 nanoparticle modified polyacrylonitrile (PAN) fibers. The desired electrospinning mixture comprising polymer and nanoparticles in dimethyleformamide, was prepared. During electrospinning, the precursor solution was injected using a ...

متن کامل

Electrospinning Nanofibers Gelatin scaffolds: Nanoanalysis of properties and optimizing the process for tissue engineering functional

Electrospinning has been recognized as an efficient technique for the fabrication of polymernanofibers. Recently, various polymers have successfully been electrospun into ultrafine fibers.Electrospinning is an extremely promising method for the preparation of tissue engineering scaffolds.In this study, nanofibers gelatin was electrospun at 20% v/v optimized content. To produce...

متن کامل

Increasing Mechanical Properties of 2-D-Structured Electrospun Nylon 6 Non-Woven Fiber Mats

Tensile strength, Young's modulus, and toughness of electrospun nylon 6 non-woven fiber mats were improved by increasing individual nanofiber strength and fiber-fiber load sharing. Single-walled carbon nanotubes (CNTs) were used as reinforcement to increase the strength of the electrospun nylon 6 nanofibers. Young's modulus, tensile strength, and toughness of the nylon 6 non-woven fiber mats el...

متن کامل

Investigation of drug release from paclitaxel loaded polylactic acid nanofibers

Objective(s): In this study, drug loaded electrospun nanofibrous mats were prepared and drug release and mechanism from prepared nanofibers were investigated.  Materials and Methods: Paclitaxel (PTX) loaded polylactic acid (PLA) nanofibers were prepared by electrospinning. The effects of process parameters, such as PTX concentration, tip to collector distance, voltage, temperature and flow rate...

متن کامل

Electrospun Nanofibers with Tunable Electrical Conductivity

Electrospinning is a convenient method to produce nanofibers with controlled diameters on the order of tens to hundreds of nanometers. The resulting nonwoven fiber mats are lightweight, highly porous, and have high specific surface areas around 1 to 100 m/g. Combined with the high electrical conductivity of intrinsically conductive polymers, conductive electrospun fiber mats are promising for a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008