Intestinal and placental zinc transport pathways.
نویسنده
چکیده
Mammalian members of the cation diffusion facilitator (CDF) and zrt-, irt-like protein (ZIP) families of Zn transporters, initially identified in Saccharomyces cerevisiae and Arabidopsis thalania spp., have been cloned during the last 8 years and have been classified as families SLC30 and SLC39 respectively. The cloning of human Zn transporters ZnT-like transporter 1 (hZTL1)/ZnT5 (SLC30A5) and hZIP4 (SLC39A4) were major advances in the understanding of the molecular mechanisms of dietary Zn absorption. Both transporters are localised at the enterocyte apical membrane and are, therefore, potentially of fundamental importance in dietary Zn uptake. hZTL1 mediates Zn uptake when expressed in Xenopus laevis oocytes and hZIP4 is mutated in most cases of the inherited Zn deficiency disease acrodermatitis enteropathica. Localisation of hZTL1/ZnT5 at the apical membrane of the placental syncytiotrophoblast indicates a fundamental role in the transfer of Slc30 Zn to the foetus. Observations in rodent models indicate that in the intestine increased Zn availability increases expression of Zn transporters. Human intestinal Caco-2 cells show a similar response to increasing the Zn2+ concentration of the nutrient medium in relation to the expression of mRNA corresponding to several Zn transporters and that of ZnT1 (SLC30A1) and hZTL1/ZnT5 proteins. In the human placental cell line JAR, however, expression at the mRNA level of a number of Zn transporters is not modified by Zn availability, whilst ZnT1 and hZTL1/ZnT5 proteins are reduced under Zn-supplemented conditions. These differences between Caco-2 and JAR cells in Zn transporter gene responses to Zn supply may reflect the different extracellular Zn concentrations encountered by the corresponding cell types in vitro.
منابع مشابه
Mammalian zinc transport, trafficking, and signals.
Structural, catalytic, and regulatory functions of zinc in biology continue to be defined. The number of genes coding for proteins with zinc-binding domains is conservatively estimated at 3% of the human genome but possibly is asmuch as 10% (1, 2). Zinc utilization in abundant, yet diverse, applications illustrateswhy organisms have evolved specific pathways to homeostatically regulate availabi...
متن کاملIn vitro study on the transport of zinc across intestinal epithelial cells using Caco-2 monolayers and isolated rat intestinal membranes.
The variety of physiologic and biologic functions of zinc is fascinating and could be applicable to medicine. Our previous studies demonstrated that the absorption of zinc after oral administration to rats is dose-dependent. In order to clarify the detailed mechanism of the dose-dependent in vivo absorption, the transport of zinc across intestinal epithelial cells was investigated using Caco-2 ...
متن کاملCysteine-rich intestinal protein binds zinc during transmucosal zinc transport.
The mechanism of zinc absorption has not been delineated, but kinetic studies show that both passive and carrier-mediated processes are involved. We have identified a low molecular mass zinc-binding protein in the soluble fraction of rat intestinal mucosa that could function as an intracellular zinc carrier. The protein was not detected in liver or pancreas, suggesting a role specific to the in...
متن کاملSalidroside regulates the expressions of IL-6 and defensins in LPS-activated intestinal epithelial cells through NF-κB/MAPK and STAT3 pathways
Objective(s): To reveal the detailed mechanism underlying the functions of salidroside on the inflammation of intestinal epithelial cells during IBD.Materials and Methods: Quantitative real-time PCR was employed to assess the expression of IL-6, IL-10, and α-defensins 5 and 6. ELISA assay was performed to measure the secretion of IL-6 and IL-10. MTT assay was used to determine the cell viabilit...
متن کاملRegulation of the zinc transporter ZnT-1 by dietary zinc.
The understanding of mechanisms controlling zinc absorption and metabolism at the molecular level has advanced recently. Kinetics of zinc transport have been investigated for many years, but only recently have genes coding for proteins thought to be involved in the transport process been cloned. Four putative zinc transporters, known as ZnT-1 through ZnT-4, have now been described. Among these ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Proceedings of the Nutrition Society
دوره 63 1 شماره
صفحات -
تاریخ انتشار 2004