Lsr2 of Mycobacterium tuberculosis is a DNA-bridging protein

نویسندگان

  • Jeffrey M. Chen
  • Huiping Ren
  • James E. Shaw
  • Yu Jing Wang
  • Ming Li
  • Andrea S. Leung
  • Vanessa Tran
  • Nicolas M. Berbenetz
  • Dana Kocíncová
  • Christopher M. Yip
  • Jean-Marc Reyrat
  • Jun Liu
چکیده

Lsr2 is a small, basic protein present in Mycobacterium and related actinomycetes. Recent studies suggest that Lsr2 is a regulatory protein involved in multiple cellular processes including cell wall biosynthesis and antibiotic resistance. However, the underlying molecular mechanisms remain unknown. In this article, we performed biochemical studies of Lsr2-DNA interactions and structure-function analysis of Lsr2. Analysis by atomic force microscopy revealed that Lsr2 has the ability to bridge distant DNA segments, suggesting that Lsr2 plays a role in the overall organization and compactness of the nucleoid. Mutational analysis identified critical residues and selection of dominant negative mutants demonstrated that both DNA binding and protein oligomerization are essential for the normal functions of Lsr2 in vivo. These results provide strong evidence that Lsr2 is a DNA bridging protein, which represents the first identification of such proteins in bacteria phylogenetically distant from the Enterobacteriaceae. DNA bridging by Lsr2 also provides a mechanism of transcriptional regulation by Lsr2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zafirlukast inhibits complexation of Lsr2 with DNA and growth of Mycobacterium tuberculosis.

The mycobacterial nucleoid-associated protein Lsr2 is a DNA-bridging protein that plays a role in condensation and structural organization of the genome and acts as a global repressor of gene transcription. Here we describe experiments demonstrating that zafirlukast inhibits the complexation between Lsr2 and DNA in vitro. Zafirlukast is shown to inhibit growth in two different species of mycoba...

متن کامل

Mechanism of DNA organization by Mycobacterium tuberculosis protein Lsr2

Bacterial nucleoid-associated proteins, such as H-NS-like proteins in Enterobacteriaceae, are abundant DNA-binding proteins that function in chromosomal DNA organization and gene transcription regulation. The Mycobacterium tuberculosis Lsr2 protein has been proposed to be the first identified H-NS analogue in Gram-positive bacteria based on its capability to complement numerous in vivo function...

متن کامل

Lsr2 of Mycobacterium represents a novel class of H-NS-like proteins.

Lsr2 is a small, basic protein present in Mycobacterium and related actinomycetes. Our previous in vitro biochemical studies showed that Lsr2 is a DNA-bridging protein, a property shared by H-NS-like proteins in gram-negative bacteria. Here we present in vivo evidence based on genetic complementation experiments that Lsr2 is a functional analog of H-NS, the first such protein identified in gram...

متن کامل

The Structure of the Oligomerization Domain of Lsr2 from Mycobacterium tuberculosis Reveals a Mechanism for Chromosome Organization and Protection

Lsr2 is a small DNA-binding protein present in mycobacteria and related actinobacteria that regulates gene expression and influences the organization of bacterial chromatin. Lsr2 is a dimer that binds to AT-rich regions of chromosomal DNA and physically protects DNA from damage by reactive oxygen intermediates (ROI). A recent structure of the C-terminal DNA-binding domain of Lsr2 provides a rat...

متن کامل

The multifunctional histone-like protein Lsr2 protects mycobacteria against reactive oxygen intermediates.

Mycobacterium tuberculosis has evolved a number of strategies to survive within the hostile environment of host phagocytes. Reactive nitrogen and oxygen intermediates (RNI and ROI) are among the most effective antimycobacterial molecules generated by the host during infection. Lsr2 is a M. tuberculosis protein with histone-like features, including the ability to regulate a variety of transcript...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2008