Consequences of elevated carbon dioxide and ozone for foliar chemical composition and dynamics in trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera).

نویسندگان

  • R L Lindroth
  • B J Kopper
  • W F Parsons
  • J G Bockheim
  • D F Karnosky
  • G R Hendrey
  • K S Pregitzer
  • J G Isebrands
  • J Sober
چکیده

Atmospheric chemical composition affects foliar chemical composition, which in turn influences the dynamics of both herbivory and decomposition in ecosystems. We assessed the independent and interactive effects of CO2 and O3 fumigation on foliar chemistry of quaking aspen (Populus tremuloides) and paper birch (Betula papyrifera) at a Free-Air CO2 Enrichment (FACE) facility in northern Wisconsin. Leaf samples were collected at five time periods during a single growing season, and analyzed for nitrogen. starch and condensed tannin concentrations, nitrogen resorption efficiencies (NREs), and C:N ratios. Enriched CO2 reduced foliar nitrogen concentrations in aspen and birch; O3 only marginally reduced nitrogen concentrations. NREs were unaffected by pollution treatment in aspen, declined with 03 exposure in birch, and this decline was ameliorated by enriched CO2. C:N ratios of abscised leaves increased in response to enriched CO2 in both tree species. O3 did not significantly alter C:N ratios in aspen, although values tended to be higher in + CO2 + O3 leaves. For birch, O3 decreased C:N ratios under ambient CO2 and increased C:N ratios under elevated CO2. Thus, under the combined pollutants, the C:N ratios of both aspen and birch leaves were elevated above the averaged responses to the individual and independent trace gas treatments. Starch concentrations were largely unresponsive to CO2 and O3 treatments in aspen. but increased in response to elevated CO2 in birch. Levels of condensed tannins were negligibly affected by CO2 and O3 treatments in aspen, but increased in response to enriched CO2 in birch. Results from this work suggest that changes in foliar chemical composition elicited by enriched CO2 are likely to impact herbivory and decomposition, whereas the effects of O3 are likely to be minor, except in cases where they influence plant response to CO2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stem wood properties of Populus tremuloides, Betula papyrifera and Acer saccharum saplings after 3 years of treatments to elevated carbon dioxide and ozone

The aim of this study was to examine the effects of elevated carbon dioxide [CO2] and ozone [O3] and their interaction on wood chemistry and anatomy of five clones of 3-yearold trembling aspen (Populus tremuloides Michx.). Wood chemistry was studied also on paper birch (Betula papyrifera Marsh.) and sugar maple (Acer saccharum Marsh.) seedling-origin saplings of the same age. Material for the s...

متن کامل

Wood properties of trembling aspen and paper birch after 5 years of exposure to elevated concentrations of CO(2) and O(3).

We investigated the interactive effects of elevated concentrations of carbon dioxide ([CO(2)]) and ozone ([O(3)]) on radial growth, wood chemistry and structure of five 5-year-old trembling aspen (Populus tremuloides Michx.) clones and the wood chemistry of paper birch (Betula papyrifera Marsh.). Material for the study was collected from the Aspen FACE (free-air CO(2) enrichment) experiment in ...

متن کامل

Effects of elevated concentrations of atmospheric CO2 and tropospheric O3 on leaf litter production and chemistry in trembling aspen and paper birch communities.

Human activities are increasing the concentrations of atmospheric carbon dioxide ([CO2]) and tropospheric ozone ([O3]), potentially leading to changes in the quantity and chemical quality of leaf litter inputs to forest soils. Because the quality and quantity of labile and recalcitrant carbon (C) compounds influence forest productivity through changes in soil organic matter content, characteriz...

متن کامل

Effects of elevated concentrations of atmospheric CO2 and tropospheric O3 on decomposition of fine roots.

Rising atmospheric carbon dioxide (CO2) concentration ([CO2]) could alter terrestrial carbon (C) cycling by affecting plant growth, litter chemistry and decomposition. How the concurrent increase in tropospheric ozone (O3) concentration ([O3]) will interact with rising atmospheric [CO2] to affect C cycling is unknown. A major component of carbon cycling in forests is fine root production, morta...

متن کامل

Impacts of elevated CO2 and/or O3 on leaf ultrastructure of aspen (Populus tremuloides) and birch (Betula papyrifera) in the aspen FACE experiment.

Impacts of elevated atmospheric O3 and/or CO2 on three clones of aspen (Populus tremuloides Michx.) and birch (Betula papyrifera Marsh.) were studied to determine, whether or not elevated CO2 ameliorates O3-induced damage to leaf cells. The plants were exposed for 3 years at the Aspen FACE exposure site in Wisconsin (USA) prior to sampling for ultrastructural investigations on 19 June 1999. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental pollution

دوره 115 3  شماره 

صفحات  -

تاریخ انتشار 2001