Model Averaging and Value-at-Risk based Evaluation of Large Multi Asset Volatility Models for Risk Management
نویسنده
چکیده
This paper considers the problem of model uncertainty in the case of multi-asset volatility models and discusses the use of model averaging techniques as a way of dealing with the risk of inadvertently using false models in portfolio management. Evaluation of volatility models is then considered and a simple Value-at-Risk (VaR) diagnostic test is proposed for individual as well as ‘average’ models. The asymptotic as well as the exact finite-sample distribution of the test statistic, dealing with the possibility of parameter uncertainty, are established. The model averaging idea and the VaR diagnostic tests are illustrated by an application to portfolios of daily returns based on twenty two of Standard & Poor’s 500 industry group indices over the period 1995-2003. We find strong evidence in support of ‘thick’ modelling proposed in the forecasting literature by Granger and Jeon (2004). JEL Classifications: C32, C52, C53, G11
منابع مشابه
Modeling Gold Volatility: Realized GARCH Approach
F orecasting the volatility of a financial asset has wide implications in finance. Conditional variance extracted from the GARCH framework could be a suitable proxy of financial asset volatility. Option pricing, portfolio optimization, and risk management are examples of implications of conditional variance forecasting. One of the most recent methods of volatility forecasting is Real...
متن کاملEvaluation Approaches of Value at Risk for Tehran Stock Exchange
The purpose of this study is estimation of daily Value at Risk (VaR) for total index of Tehran Stock Exchange using parametric, nonparametric and semi-parametric approaches. Conditional and unconditional coverage backtesting are used for evaluating the accuracy of calculated VaR and also to compare the performance of mentioned approaches. In most cases, based on backtesting statistics Results, ...
متن کاملForecasting Crude Oil prices Volatility and Value at Risk: Single and Switching Regime GARCH Models
Forecasting crude oil price volatility is an important issues in risk management. The historical course of oil price volatility indicates the existence of a cluster pattern. Therefore, GARCH models are used to model and more accurately predict oil price fluctuations. The purpose of this study is to identify the best GARCH model with the best performance in different time horizons. To achieve th...
متن کاملAuthor's Personal Copy Model Averaging in Risk Management with an Application to Futures Markets ☆
Article history: Received 11 January 2006 Received in revised form 31 July 2008 Accepted 1 August 2008 Available online 6 August 2008 This paper considers the problem of model uncertainty in the case of multi-asset volatility models and discusses the use of model averaging techniques as away of dealing with the risk of inadvertently using false models in portfolio management. Evaluation of vola...
متن کاملThe Integration of Multi-Factor Model of Capital Asset Pricing and Penalty Function for Stock Return Evaluation
One of the main concerns of investors is the evaluation of the return on investment, which is conducted using various models such as the CAPM (single-factor model), Fama-French three/five-factor models, and Roy and Shijin’s six-factor model and other models known as multi-factor models. Despite the widespread use of these models, their major drawbacks include sensitivity to unexpected changes, ...
متن کامل