Graphs with Bounded Induced Distance Sera no Cicerone
نویسنده
چکیده
In this work we introduce the class of graphs with bounded induced distance of order k, (BID(k) for short). A graph G belongs to BID(k) if the distance between any two nodes in every connected induced subgraph of G is at most k times their distance in G. These graphs can model communication networks in which node failures may occur: at a given time, if sender and receiver are still connected, any message can be delivered through a path (that, due to node failures, could be longer than the shortest one) the length of which is at most k times the best possible. In this work we rst provide two characterizations of graphs belonging to BID(k): one based on the stretch number (a new invariant introduced here), and the other based on cycle-chord conditions. After that, we investigate classes with order k 2. In this context, we note that the class BID(1) is the well known class of distance-hereditary graphs, and we show that 3=2 is a lower bound for the order k of graphs that are not distance-hereditary. Then, we characterize graphs in BID(3=2) by means of forbidden induced subgraphs, and we also show that graphs in BID(2) have a more complex characterization. We prove that the recognition problem for the generic class BID(k) is Co-NP-complete. Finally, we show that the split composition can be used to generate graphs in BID(k).
منابع مشابه
Graphs with Bounded Induced Distance
In this work we introduce the class of graphs with bounded induced distance of order k, (BID(k) for short). A graph G belongs to BID(k) if the distance between any two nodes in every connected induced subgraph of G is at most k times their distance in G. These graphs can model communication networks in which node failures may occur: at a given time, if sender and receiver are still connected, a...
متن کامل(k, +)-Distance-Hereditary Graphs
In this work we introduce, characterize, and provide algorithmic results for (k, +)–distance-hereditary graphs, k ≥ 0. These graphs can be used to model interconnection networks with desirable connectivity properties; a network modeled as a (k, +)–distance-hereditary graph can be characterized as follows: if some nodes have failed, as long as two nodes remain connected, the distance between the...
متن کاملNetworks with Small Stretch Number
In a previous work, the authors introduced the class of graphs with bounded induced distance of order k, (BID(k) for short) to model non-reliable interconnection networks. A network modeled as a graph in BID(k) can be characterized as follows: if some nodes have failed, as long as two nodes remain connected, the distance between these nodes in the faulty graph is at most k times the distance in...
متن کاملk-forested choosability of graphs with bounded maximum average degree
A proper vertex coloring of a simple graph is $k$-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than $k$. A graph is $k$-forested $q$-choosable if for a given list of $q$ colors associated with each vertex $v$, there exists a $k$-forested coloring of $G$ such that each vertex receives a color from its own list. In this paper, we prov...
متن کاملDistinct Distances in Graph Drawings
The distance-number of a graph G is the minimum number of distinct edgelengths over all straight-line drawings of G in the plane. This definition generalises many well-known concepts in combinatorial geometry. We consider the distancenumber of trees, graphs with no K− 4 -minor, complete bipartite graphs, complete graphs, and cartesian products. Our main results concern the distance-number of gr...
متن کامل