Photolysis of pyruvic acid in ice: Possible relevance to CO and CO2 ice core record anomalies

نویسندگان

  • M. I. Guzmán
  • M. R. Hoffmann
  • A. J. Colussi
چکیده

[1] The abnormal spikes detected in some CO and CO2 polar ice core records indicate persistent chemical activity in glacial ice. Since CO and CO2 spikes are correlated, and their amplitudes scale with reported CO/CO2 yields for the photolysis of dissolved natural organic matter, a common photochemical source is implicated. Given that sufficient actinic radiation is constantly generated throughout ice by cosmic muons (Colussi and Hoffmann, 2003), it remains to be shown that the photolyses of typical organic contaminants proceed by similar mechanisms in water and ice. Here we report that the photodecarboxylation of pyruvic acid (PA, an ubiquitous ice contaminant) indeed leads to the same products nearly as efficiently in both media. CO2 is promptly released from frozen PA/H2O films upon illumination and continues to evolve after photolysis. By analogy with our studies in water (Guzmán et al., 2006b), we infer that PA* reacts with PA in ice producing CH3C(O)C(O)O and (CH3 _ C (OH)C(O)OH) radicals. The barrierless decarboxylation, CH3C(O)C(O)O ! CH3C(O) + CO2, accounts for prompt CO2 emissions down to 140 K. Bimolecular radical reactions subsequently ensue in fluid molecular environments, both in water and ice, leading to metastable intermediates that decarboxylate immediately in water, but protractedly in ice. The overall quantum yield of CO2 production in the l ~313 nm photolysis of PA in ice at 250 K is 60% of that in water at 293 K. The in situ photolysis of natural organic matter is, therefore, a plausible explanation of CO and CO2 ice core record anomalies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CO(2) Diffusion in Polar Ice: Observations from Naturally Formed CO(2) Spikes in the Siple Dome (Antarctica) Ice Core

One common assumption in interpreting ice-core CO2 records is that diffusion in the ice does not affect the concentration profile. However, this assumption remains untested because the extremely small CO2 diffusion coefficient in ice has not been accurately determined in the laboratory. In this study we take advantage of high levels of CO2 associated with refrozen layers in an ice core from Sip...

متن کامل

Infrared spectroscopy of interstellar apolar ice analogs

Apolar ices have been observed in several regions in dense clouds and are likely dominated by molecules such as CO, CO2 and the infrared inactive molecules O2 and N2. Interstellar solid CO has been well characterized by ground-based high resolution measurements. Recent ISO results showed the ubiquitous presence of abundant CO2 ice and the presence of CO2-rich ice mantles towards several molecul...

متن کامل

Evolution of interstellar ices.

Infrared observations, combined with realistic laboratory simulations, have revolutionized our understanding of interstellar ice and dust, the building blocks of comets. Ices in molecular clouds are dominated by the very simple molecules H2O, CH3OH, NH3, CO, CO2, and probably H2CO and H2. More complex species including nitriles, ketones, and esters are also present, but at lower concentrations....

متن کامل

CO2 synthesis in solid CO by Lyman-α photons and 200 keV protons

We have studied the synthesis of carbon dioxide from solid carbon monoxide at 16 K induced by photolysis with Lyman-α photons and by irradiation with 200 keV protons to quantitatively compare the effects of photolysis and ion irradiation on CO ice and to determine the importance of these processes in interstellar ice grains. The CO and CO2 concentrations during irradiation of an initially pure ...

متن کامل

Spatial mapping of ices in the Oph - F core A direct measurement of CO depletion and the formation of CO

Aims. Ices in dense star-forming cores contain the bulk of volatile molecules apart from H2 and thus represent a large fraction of dark cloud chemistry budget. Mm observations of gas provide indirect evidence for significant freeze-out of CO in the densest cores. To directly constrain the freeze-out profile of CO, the formation route of CO2 and the carrier of the 6.8 μm band, the spatial distri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007