Finite element least-squares methods for a compressible stokes system

نویسندگان

  • Keehwan Kim
  • Sang Dong Kim
  • Sangsik Shin
چکیده

where the symbols ∆, ∇, and ∇· stand for the Laplacian, gradient, and divergence operators, respectively (∆u is the vector of components ∆ui); the number μ is a viscous constant; f is a given vector function; β = (U,V)t is a given C1 function. The system (1.1) may be obtained by linearizing the steady-state barotropic compressible viscous Navier-Stokes equations without an ambient flow (see [8, 9] for more detail). Since the continuity equation is of hyperbolic type containing a convective derivative of p, we further assume that the boundary condition for the pressure is given on the inlet of the boundary where the characteristic function β points into Ω, that is,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Least-Squares Finite Element Approximation for the Compressible Stokes Equations

This article studies a least-squares finite element method for the numerical approximation of compressible Stokes equations. Optimal order error estimates for the velocity and pressure in theH are established. The choice of finite element spaces for the velocity and pressure is not subject to the inf-sup condition. c © 2000 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 16: 62–70...

متن کامل

Adaptive Finite Element Methods for Low-mach-number Flows with Chemical Reactions

Introduction We describe recent developments in the design and implementation of nite element methods for the Navier-Stokes equations modelling chemically reactive ows. The emphasize is on the low-Mach number regime including the limit case of incompressible ow. The most important ingredients are residual driven a posteriori mesh reenement, fully coupled defect-correction iteration for lineariz...

متن کامل

Least Squares Finite Element Methods for Viscous, Incompressible Flows

This paper is concerned with finite element methods of least-squares type for the approximate numerical solution of incompressible, viscous flow problems. Our main focus is on issues that are critical for the success of the finite element methods, such as decomposition of the Navier-Stokes equations into equivalent first-order systems, mathematical prerequisites for the optimality of the method...

متن کامل

Numerical Solution of Nonlinear Boundary Value Problems by Variational Methods. Applications

(i) The approximation by G-alerkin type methods such as finite elements, spectral methods, etc... (ii) The numerical solution of the approximate problems by efficient iterative methods. To illustrate the above generalities, we shall discuss in Sections 2, 3, 4 the solution of nonlinear boundary value problems by least squares-conjugate gradient methods and apply them to quite classical nonlinea...

متن کامل

Negative Norm Least-Squares Methods for the Velocity-Vorticity-Pressure Navier-Stokes Equations

We develop and analyze a least-squares finite element method for the steady state, incompressible Navier-Stokes equations, written as a first-order system involving vorticity as new dependent variable. In contrast to standard L least-squares methods for this system, our approach utilizes discrete negative norms in the least-squares functional. This allows to devise efficient preconditioners for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2004  شماره 

صفحات  -

تاریخ انتشار 2004