Surrogate Regret Bounds for the Area Under the ROC Curve via Strongly Proper Losses

نویسنده

  • Shivani Agarwal
چکیده

The area under the ROC curve (AUC) is a widely used performance measure in machine learning, and has been widely studied in recent years particularly in the context of bipartite ranking. A dominant theoretical and algorithmic framework for AUC optimization/bipartite ranking has been to reduce the problem to pairwise classification; in particular, it is well known that the AUC regret can be formulated as a pairwise classification regret, which in turn can be upper bounded using usual regret bounds for binary classification. Recently, Kotlowski et al. (2011) showed AUC regret bounds in terms of the regret associated with ‘balanced’ versions of the standard (non-pairwise) logistic and exponential losses. In this paper, we obtain such (non-pairwise) surrogate regret bounds for the AUC in terms of a broad class of proper (composite) losses that we term strongly proper. Our proof technique is considerably simpler than that of Kotlowski et al. (2011), and relies on properties of proper (composite) losses as elucidated recently by Reid and Williamson (2009, 2010, 2011) and others. Our result yields explicit surrogate bounds (with no hidden balancing terms) in terms of a variety of strongly proper losses, including for example logistic, exponential, squared and squared hinge losses. An important consequence is that standard algorithms minimizing a (non-pairwise) strongly proper loss, such as logistic regression and boosting algorithms (assuming a universal function class and appropriate regularization), are in fact AUC-consistent; moreover, our results allow us to quantify the AUC regret in terms of the corresponding surrogate regret. We also obtain tighter surrogate regret bounds under certain low-noise conditions via a recent result of Clémençon and Robbiano (2011).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surrogate regret bounds for bipartite ranking via strongly proper losses

The problem of bipartite ranking, where instances are labeled positive or negative and the goal is to learn a scoring function that minimizes the probability of mis-ranking a pair of positive and negative instances (or equivalently, that maximizes the area under the ROC curve), has been widely studied in recent years. A dominant theoretical and algorithmic framework for the problem has been to ...

متن کامل

On the Consistency of AUC Pairwise Optimization

AUC (Area Under ROC Curve) has been an important criterion widely used in diverse learning tasks. To optimize AUC, many learning approaches have been developed, most working with pairwise surrogate losses. Thus, it is important to study the AUC consistency based on minimizing pairwise surrogate losses. In this paper, we introduce the generalized calibration for AUC optimization, and prove that ...

متن کامل

Calibrated Surrogate Losses for Classification with Label-Dependent Costs

We present surrogate regret bounds for arbitrary surrogate losses in the context of binary classification with label-dependent costs. Such bounds relate a classifier’s risk, assessed with respect to a surrogate loss, to its cost-sensitive classification risk. Two approaches to surrogate regret bounds are developed. The first is a direct generalization of Bartlett et al. [2006], who focus on mar...

متن کامل

Surrogate losses and regret bounds for cost-sensitive classification with example-dependent costs

We study surrogate losses in the context of cost-sensitive classification with exampledependent costs, a problem also known as regression level set estimation. We give sufficient conditions on the surrogate loss for the existence of a surrogate regret bound. Such bounds imply that as the surrogate risk tends to its optimal value, so too does the expected misclassification cost. Our sufficient c...

متن کامل

Information, Divergence and Risk for Binary Experiments

We unify f -divergences, Bregman divergences, surrogate loss bounds (regret bounds), proper scoring rules, matching losses, cost curves, ROC-curves and information. We do this by systematically studying integral and variational representations of these objects and in so doing identify their primitives which all are related to cost-sensitive binary classification. As well as clarifying relations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013