Applying Gibbs Sampler for Multivariate Hierarchical Linear Model
نویسنده
چکیده
Among various HLM techniques, the Multivariate Hierarchical Linear Model (MHLM) is desirable to use, particularly when multivariate criterion variables are collected and the covariance structure has information valuable for data analysis. In order to reflect prior information or to obtain stable results when the sample size and the number of groups are not sufficiently large, the Bayes method has often been employed in hierarchical data analysis. In these cases, although the Markov Chain Monte Carlo (MCMC) method is a rather powerful tool for parameter estimation, Procedures regarding MCMC have not been formulated for MHLM. For this reason, this research presents concrete procedures for parameter estimation through the use of the Gibbs samplers. Lastly, several future topics for the use of MCMC approach for HLM is discussed. Keywords— Gibbs sampler. Hierarchical Linear Model. Markov Chain Monte Carlo. Multivariate Hierarchical Linear Model.
منابع مشابه
The Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data
The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...
متن کاملGibbs Sampling for a Bayesian Hierarchical General Linear Model
We consider two-component block Gibbs sampling for a Bayesian hierarchical version of the normal theory general linear model. This model is practically relevant in the sense that it is general enough to have many applications and in that it is not straightforward to sample directly from the corresponding posterior distribution. There are two possible orders in which to update the components of ...
متن کاملGeometric ergodicity of random scan Gibbs samplers for hierarchical one-way random effects models
We consider two Bayesian hierarchical one-way random effects models and establish geometric ergodicity of the corresponding random scan Gibbs samplers. Geometric ergodicity, along with a moment condition, guarantees a central limit theorem for sample means and quantiles. In addition, it ensures the consistency of various methods for estimating the variance in the asymptotic normal distribution....
متن کاملEfficient Sampling Methods for Truncated Multivariate Normal and Student-t Distributions Subject to Linear Inequality Constraints
Sampling from a truncated multivariate normal distribution subject to multiple linear inequality constraints is a recurring problem in many areas in statistics and econometrics, such as the order restricted regressions, censored data models, and shape-restricted nonparametric regressions. However, the sampling problem still appears non-trivial due to the existence of the analytically intractabl...
متن کاملBayesian Estimation of a Meta-analysis model using Gibbs sampler
A hierarchical Bayesian model is investigated. This model can accommodate study heterogeneity in metaanalyses. The joint posterior distribution is derived by multiplying the likelihood and priors on this model. The conditional posterior distribution of all parameters is obtained for Gibbs sampler algorithm. A simulation study is then performed to demonstrate the validity of the Gibbs sampler in...
متن کامل