Dynamical Response of Nanomechanical Resonators to Biomolecular Interactions
نویسندگان
چکیده
We studied the dynamical response of a nanomechanical resonator to biomolecular (e.g. DNA) adsorptions on a resonator’s surface by using theoretical model, which considers the Hamiltonian H such that the potential energy consists of elastic bending energy of a resonator and the potential energy for biomolecular interactions. It was shown that the resonant frequency shift for a resonator due to biomolecular adsorption depends on not only the mass of adsorbed biomolecules but also the biomolecular interactions. Specifically, for dsDNA adsorption on a resonator’s surface, the resonant frequency shift is also dependent on the ionic strength of a solvent, implying the role of biomolecular interactions on the dynamic behavior of a resonator. This indicates that nanomechanical resonators may enable one to quantify the biomolecular mass, implying the enumeration of biomolecules, as well as gain insight into intermolecular interactions
منابع مشابه
Dynamical response of nanomechanical oscillators in immiscible viscous fluid for in vitro biomolecular recognition.
Dynamical response of nanomechanical cantilever structures immersed in a viscous fluid is important to in vitro single-molecule force spectroscopy, biomolecular recognition of disease-specific proteins, and the study of microscopic protein dynamics. Here we study the stochastic response of biofunctionalized nanomechanical cantilever beams in a viscous fluid. Using the fluctuation-dissipation th...
متن کاملEvidence of universality in the dynamical response of nanomechanical ultra-nanocrystalline diamond resonators at millikelvin temperatures
We report millikelvin-temperature measurements of dissipation and frequency shift in megahertzrange resonators fabricated from ultra-nanocrystalline diamond. Frequency shift δf/f0 and dissipation Q−1 demonstrate temperature dependence in the millikelvin range similar to the glass model of two level systems. The logarithmic temperature dependence of δf/f0 is in good agreement with the glass mode...
متن کاملPlasmonically enhanced thermomechanical detection of infrared radiation.
Nanoplasmonics has been an attractive area of research due to its ability to localize and manipulate freely propagating radiation on the nanometer scale for strong light-matter interactions. Meanwhile, nanomechanics has set records in the sensing of mass, force, and displacement. In this work, we report efficient coupling between infrared radiation and nanomechanical resonators through nanoante...
متن کاملFast optical cooling of a nanomechanical cantilever by a dynamical Stark-shift gate
The efficient cooling of nanomechanical resonators is essential to exploration of quantum properties of the macroscopic or mesoscopic systems. We propose such a laser-cooling scheme for a nanomechanical cantilever, which works even for the low-frequency mechanical mode and under weak cooling lasers. The cantilever is coupled by a diamond nitrogen-vacancy center under a strong magnetic field gra...
متن کاملDesign strategies for controlling damping in micromechanical and nanomechanical resonators
Damping is a critical design parameter for miniaturized mechanical resonators used in microelectromechanical systems (MEMS), nanoelectromechanical systems (NEMS), optomechanical systems, and atomic force microscopy for a large and diverse set of applications ranging from sensing, timing, and signal processing to precision measurements for fundamental studies of materials science and quantum mec...
متن کامل