Pathways of cylindrical orientations in PS-b-P4VP diblock copolymer thin films upon solvent vapor annealing.
نویسندگان
چکیده
The orientation changes of perpendicular cylindrical microdomains in polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) thin films upon annealing in different solvent vapors were investigated by in situ grazing incidence small-angle X-ray scattering (GISAXS) and ex situ scanning force microscopy (SFM). The swelling of P4VP perpendicular cylinders (C⊥) in chloroform, a non-selective solvent vapor, leads to the reorientation to in-plane cylinders through a disordered state in a particular kinetic pathway in the phase diagram upon drying. On the other hand, the swelling of the P4VP perpendicular cylinders in a selective solvent vapor (i.e., 1,4-dioxane) induces a morphological transition from cylindrical to ellipsoidal as a transient structure to spherical microdomains; subsequent solvent evaporation resulted in shrinkage of the matrix in the vertical direction, merging the ellipsoidal domains into the perpendicularly aligned cylinders. In this paper, we have discussed the mechanism based on the selectivity of the solvent to the constituting blocks that is mainly responsible for the orientation changes.
منابع مشابه
Supramolecular Assemblies from Poly(styrene)-block-poly(4-vinylpyridine) Diblock Copolymers Mixed with 6-Hydroxy-2-naphthoic Acid
Supramolecular assemblies involving interaction of a small organic molecule, 2-hydroxy-6-Naphthoic acid (HNA), with poly(styrene)-block-poly(4-vinylpyridine) (PS-b-P4VP) diblock copolymers are utilized to obtain micellar structures in solution, nanostructured thin films on flat substrates and, finally, nanoporous thin films. The formation of hydrogen bonds between HNA and the poly(4-vinylpyridi...
متن کاملDefect-free nanoporous thin films from ABC triblock copolymers.
The self-assembly of triblock copolymers of poly(ethylene oxide-b-methyl methacrylate-b-styrene) (PEO-b-PMMA-b-PS), where PS is the major component and PMMA and PEO are minor components, provides a robust route to highly ordered, nanoporous arrays with cylindrical pores of 10-15 nm that show promise in block copolymer lithography. These ABC triblock copolymers were synthesized by controlled liv...
متن کاملAbstract Submitted for the MAR13 Meeting of The American Physical Society In-situ Grazing-incidence Small-angle X-ray Scattering Study of Diblock Copolymer Thin Films during Solvent Annealing
Submitted for the MAR13 Meeting of The American Physical Society In-situ Grazing-incidence Small-angle X-ray Scattering Study of Diblock Copolymer Thin Films during Solvent Annealing XIAODAN GU, University of Massachusetts Amherst, ILJA GUNKEL, ALEXENDER HEXEMER, Lawrence Berkeley National lab, THOMAS RUSSELL, University of Massachusetts Amherst, UNIVERSITY OFMASSACHUSETTS AMHERST COLLABORATION...
متن کاملControl of Self-Assembly by Charge-Transfer Complexation between C60 Fullerene and Electron Donating Units of Block Copolymers
Self-assembly allows new opportunities to control the morphology and properties of fullerenebased materials. By using the electron-accepting underivatized C60 and electron-donating pyridine groups of a polystyrene-block-poly(4-vinylpyridine), PS-block-P4VP, we here show the first example that charge-transfer complexation between fullerenes and block copolymers can essentially modify the self-as...
متن کاملAiloring Spatial Orientations of Microphase-Separated Cylinders and Lamellae of Block Copolymer Thin Films
In the study, I investigated microphaseseparated nanostructures of PS-P2VP thin films by annealing in binary solvent vapors of chloroform and methanol. Ordered microphase-separated nanostructures were achieved by controlling solvent annealing conditions. One of the key parameters is the compositions of binary co-solvent vapors. We also discuss the thermodynamic properties of perpendicularly-or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft matter
دوره 10 39 شماره
صفحات -
تاریخ انتشار 2014