Screening of Non- Saccharomyces cerevisiae Strains for Tolerance to Formic Acid in Bioethanol Fermentation

نویسندگان

  • Cyprian E. Oshoma
  • Darren Greetham
  • Edward J. Louis
  • Katherine A. Smart
  • Trevor G. Phister
  • Chris Powell
  • Chenyu Du
  • Shihui Yang
چکیده

Formic acid is one of the major inhibitory compounds present in hydrolysates derived from lignocellulosic materials, the presence of which can significantly hamper the efficiency of converting available sugars into bioethanol. This study investigated the potential for screening formic acid tolerance in non-Saccharomyces cerevisiae yeast strains, which could be used for the development of advanced generation bioethanol processes. Spot plate and phenotypic microarray methods were used to screen the formic acid tolerance of 7 non-Saccharomyces cerevisiae yeasts. S. kudriavzeii IFO1802 and S. arboricolus 2.3319 displayed a higher formic acid tolerance when compared to other strains in the study. Strain S. arboricolus 2.3319 was selected for further investigation due to its genetic variability among the Saccharomyces species as related to Saccharomyces cerevisiae and availability of two sibling strains: S. arboricolus 2.3317 and 2.3318 in the lab. The tolerance of S. arboricolus strains (2.3317, 2.3318 and 2.3319) to formic acid was further investigated by lab-scale fermentation analysis, and compared with S. cerevisiae NCYC2592. S. arboricolus 2.3319 demonstrated improved formic acid tolerance and a similar bioethanol synthesis capacity to S. cerevisiae NCYC2592, while S. arboricolus 2.3317 and 2.3318 exhibited an overall inferior performance. Metabolite analysis indicated that S. arboricolus strain 2.3319 accumulated comparatively high concentrations of glycerol and glycogen, which may have contributed to its ability to tolerate high levels of formic acid.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combining inhibitor tolerance and D-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production

BACKGROUND In addition to efficient pentose utilization, high inhibitor tolerance is a key trait required in any organism used for economically viable industrial bioethanol production with lignocellulose biomass. Although recent work has succeeded in establishing efficient xylose fermentation in robust industrial Saccharomyces cerevisiae strains, the resulting strains still lacked sufficient in...

متن کامل

Looking beyond Saccharomyces: the potential of non-conventional yeast species for desirable traits in bioethanol fermentation.

Saccharomyces cerevisiae has been used for millennia in the production of food and beverages and is by far the most studied yeast species. Currently, it is also the most used microorganism in the production of first-generation bioethanol from sugar or starch crops. Second-generation bioethanol, on the other hand, is produced from lignocellulosic feedstocks that are pretreated and hydrolyzed to ...

متن کامل

Characteristics of Saccharomyces cerevisiae isolated from fruits and humus: Their suitability for bread making

The objectives of this study were to clarify whether the wild yeast isolated from fruits and humus is suitable forbread making. Using colony PCR, assimilation of carbohydrate and 18S rRNA sequencing, seven strains fromamong 70 samples were identified as Saccharomyces cerevisiae. The ethanol and CO2 production by the 10-2 wild yeast strain were highest among the strains. The pH and utilized gluc...

متن کامل

Improvement of Xylose Fermentation Ability under Heat and Acid Co-Stress in Saccharomyces cerevisiae Using Genome Shuffling Technique

Xylose-assimilating yeasts with tolerance to both fermentation inhibitors (such as weak organic acids) and high temperature are required for cost-effective simultaneous saccharification and cofermentation (SSCF) of lignocellulosic materials. Here, we demonstrate the construction of a novel xylose-utilizing Saccharomyces cerevisiae strain with improved fermentation ability under heat and acid co...

متن کامل

Characteristics of Different Brewer’s Yeast Strains Used for Non-alcoholic Beverage Fermentation in Media Containing Different Fermentable Sugars

Fermentation characteristics of four strains of brewer's yeast (Saccharomyces cerevisiae strain 70424, S.rouxii strain 2535, S. rouxii strain 2531 and Saccharomyces ludwigii strain 3447) in Yeast Moldbrothcontaining four different fermentable sugars (glucose, fructose, maltose, or sucrose) were studied. Theaim was to consider the suitability of different strain/sugar treatment...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015