Feebly Projectable Algebraic Frames and Multiplicative Filters of Ideals
نویسندگان
چکیده
In the article (Martinez and Zenk, Algebra Universalis, 50, 231–257, 2003.), the authors studied several conditions on an algebraic frame L. In particular, four properties called Reg(1), Reg(2), Reg(3), and Reg(4) were considered. There it was shown that Reg(3) is equivalent to the more familiar condition known as projectability. In this article we show that there is a nice property, which we call feebly projectable, that is between Reg(3) and Reg(4). In the main section of the article we apply our notions to the frame of multiplicative filters of ideals in a commutative ring with unit and give characterizations of several well-known classes of commutative rings.
منابع مشابه
$z^circ$-filters and related ideals in $C(X)$
In this article we introduce the concept of $z^circ$-filter on a topological space $X$. We study and investigate the behavior of $z^circ$-filters and compare them with corresponding ideals, namely, $z^circ$-ideals of $C(X)$, the ring of real-valued continuous functions on a completely regular Hausdorff space $X$. It is observed that $X$ is a compact space if and only if every $z^circ$-filter ...
متن کاملSaturation, Yosida Covers and Epicompleteness in Compact Normal Frames
In this article the frame-theoretic account of what is archimedean for order-algebraists, and semisimple for people who study commutative rings, deepens with the introduction of J -frames: compact normal frames that are join-generated by their saturated elements. Yosida frames are examples of these. In the category of J -frames with suitable skeletal morphisms, the strongly projectable frames a...
متن کاملRough ideals based on ideal determined varieties
The paper is devoted to concern a relationship between rough set theory and universal algebra. Notions of lower and upper rough approximations on an algebraic structure induced by an ideal are introduced and some of their properties are studied. Also, notions of rough subalgebras and rough ideals with respect to an ideal of an algebraic structure, which is an extended notion of subalgebras and ...
متن کاملFrames in right ideals of $C^*$-algebras
we investigate the problem of the existence of a frame forright ideals of a C*-algebra A, without the use of the Kasparov stabilizationtheorem. We show that this property can not characterize A as a C*-algebraof compact operators.
متن کاملGeneralized Ideals in Orthoalgebras
Since in 1936 Birkhoff and von Neumann regarded the lattice of all closed subspaces of a separable infinite-dimensional Hilbert space that is an orthomodular lattice as a proposition system for a quantum mechanical entity (Miklós, 1998), orthomodular lattices have been considered as a mathematical model for a calculus of quantum logic. With the development of the theory of quantum logics, ortho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Categorical Structures
دوره 15 شماره
صفحات -
تاریخ انتشار 2007