PDK-1/FoxO1 pathway in POMC neurons regulates Pomc expression and food intake.
نویسندگان
چکیده
Both insulin and leptin signaling converge on phosphatidylinositol 3-OH kinase [PI(3)K]/3-phosphoinositide-dependent protein kinase-1 (PDK-1)/protein kinase B (PKB, also known as Akt) in proopiomelanocortin (POMC) neurons. Forkhead box-containing protein-O1 (FoxO1) is inactivated in a PI(3)K-dependent manner. However, the interrelationship between PI(3)K/PDK-1/Akt and FoxO1, and the chronic effects of the overexpression of FoxO1 in POMC neurons on energy homeostasis has not been elucidated. To determine the extent to which PDK-1 and FoxO1 signaling in POMC neurons was responsible for energy homeostasis, we generated POMC neuron-specific Pdk1 knockout mice (POMCPdk1(-/-)) and mice selectively expressing a constitutively nuclear (CN)FoxO1 or transactivation-defective (Delta256)FoxO1 in POMC neurons (CNFoxO1(POMC) or Delta256FoxO1(POMC)). POMCPdk1(-/-) mice showed increased food intake and body weight accompanied by decreased expression of Pomc gene. The CNFoxO1(POMC) mice exhibited mild obesity and hyperphagia compared with POMCPdk1(-/-) mice. Although expression of the CNFoxO1 made POMCPdk1(-/-) mice more obese due to excessive suppression of Pomc gene, overexpression of Delta256FoxO1 in POMC neurons had no effects on metabolic phenotypes and Pomc expression levels of POMCPdk1(-/-) mice. These data suggest a requirement for PDK-1 and FoxO1 in transcriptional regulation of Pomc and food intake.
منابع مشابه
Sirt1 rescues the obesity induced by insulin-resistant constitutively-nuclear FoxO1 in POMC neurons of male mice
OBJECTIVE The hypothalamus is the brain center that controls the energy balance. Anorexigenic proopiomelanocortin (POMC) neurons and orexigenic AgRP neurons in the arcuate nucleus of the hypothalamus plays critical roles in energy balance regulation. FoxO1 is a transcription factor regulated by insulin signaling that is deacetylated by Sirt1, a nicotinamide adenine dinucleotide- (NAD(+) -) depe...
متن کاملActivation of inwardly-rectifying k+ channels in hypothalamic POMC neurons: role in integrating synaptic and metabolic input
Hypothalamic proopiomelanocortin (POMC) neurons are critical for controlling homeostatic functions in mammals. We used a transgenic mouse model in which the POMC neurons were labeled with enhanced-green fluorescent protein (EGFP) to perform visualized, whole-cell patch recordings from pre-pubertal female hypothalamic slices. The mouse POMC-EGFP neurons expressed the same endogenous conductance ...
متن کاملActivation of inwardly-rectifying k+ channels in hypothalamic POMC neurons: role in integrating synaptic and metabolic input
Hypothalamic proopiomelanocortin (POMC) neurons are critical for controlling homeostatic functions in mammals. We used a transgenic mouse model in which the POMC neurons were labeled with enhanced-green fluorescent protein (EGFP) to perform visualized, whole-cell patch recordings from pre-pubertal female hypothalamic slices. The mouse POMC-EGFP neurons expressed the same endogenous conductance ...
متن کاملDirect leptin action on POMC neurons regulates glucose homeostasis and hepatic insulin sensitivity in mice.
Leptin action on its receptor (LEPR) stimulates energy expenditure and reduces food intake, thereby lowering body weight. One leptin-sensitive target cell mediating these effects on energy balance is the proopiomelano-cortin (POMC) neuron. Recent evidence suggests that the action of leptin on POMC neurons regulates glucose homeostasis independently of its effects on energy balance. Here, we hav...
متن کاملInsR/FoxO1 Signaling Curtails Hypothalamic POMC Neuron Number
Insulin receptor (InsR) signaling through transcription factor FoxO1 is important in the development of hypothalamic neuron feeding circuits, but knowledge about underlying mechanisms is limited. To investigate the role of InsR/FoxO1 signaling in the development and maintenance of these circuits, we surveyed the pool of hypothalamic neurons expressing Pomc mRNA in different mouse models of impa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 298 4 شماره
صفحات -
تاریخ انتشار 2010