Doped Graphene for DNA Analysis: the Electrochemical Signal is Strongly Influenced by the Kind of Dopant and the Nucleobase Structure
نویسندگان
چکیده
Doping graphene with heteroatoms can alter the electronic and electrochemical properties of the starting material. Contrasting properties should be expected when the doping is carried out with electron donating species (n-type dopants) or with electron withdrawing species (p-type dopants). This in turn can have a profound influence on the electroanalytical performance of the doped material being used for the detection of specific probes. Here we investigate the electrochemical oxidation of DNA bases adenine, guanine, thymine and cytosine on two heteroatom-doped graphene platforms namely boron-doped graphene (p-type dopant) and nitrogen-doped graphene (n-type dopant). We found that overall, boron-doped graphene provided the best response in terms of electrochemical signal sensitivity for all bases. This is due to the electron deficiency of boron-doped graphene, which can promote the oxidation of DNA bases, as opposed to nitrogen-doped graphene which possesses an excess of electrons. Moreover, also the structure of the nucleobase was found to have significant influence on the obtained signal. Our study may open new frontiers in the electrochemical detection of DNA bases which is the first step for label-free DNA analysis.
منابع مشابه
Structural, magnetic and electrical properties of pure and Dy-doped Fe2O3 nanostructures synthesized using chemical thermal decomposition technique
Pure (S1) and Dy3+-doped α-Fe2O3 (S2 and S3) nanoparticles were prepared by a combustion synthesis method at 700 ºC for 8 h using Fe(acac)3 (Tris(acetylacetonato)Iron(III)) as raw material. Characterizations of the prepared powders were carried out by powder X-ray diffraction (PXRD). Structural analysis was performed b...
متن کاملStructural, magnetic and electrical properties of pure and Dy-doped Fe2O3 nanostructures synthesized using chemical thermal decomposition technique
Pure (S1) and Dy3+-doped α-Fe2O3 (S2 and S3) nanoparticles were prepared by a combustion synthesis method at 700 ºC for 8 h using Fe(acac)3 (Tris(acetylacetonato)Iron(III)) as raw material. Characterizations of the prepared powders were carried out by powder X-ray diffraction (PXRD). Structural analysis was performed b...
متن کاملPreparation and Characterization of Reduced Graphene Oxide Doped in Sol-Gel Derived Silica for Application in Electrochemical Double-Layer Capacitors
In this study, a new graphene ceramic composite (GCC) was prepared based on the reduced grapheneoxide (rGO) doped in sol-gel derived silica. The GCC was prepared by dispersing rGO nanosheets intothe sol-gel precursors containing methyl triethoxysilane, methanol and hydrochloric acid solution.During an acid catalyzed hydrolyze reaction and gelation proc...
متن کاملSynthesis and structural properties of Mn-doped ZnO/Graphene nanocomposite
Zinc oxide (ZnO) is a promising metal oxide semiconductor with various applications, especially in the photocatalytic destruction of environmental pollutants. However, this nanoparticle has some limitations, such as poor dispersion, aggregation, and a wide energy gap. As such, the doping of metal oxide semiconductor has been strongly recommended. Addition of manganese (Mn) has proven effective ...
متن کاملChemical nature of boron and nitrogen dopant atoms in graphene strongly influences its electronic properties.
Boron and nitrogen doped graphenes are highly promising materials for electrochemical applications, such as energy storage, generation and sensing. The doped graphenes can be prepared by a broad variety of chemical approaches. The substitution of a carbon atom should induce n-type behavior in the case of nitrogen and p-type behavior in the case of boron-doped graphene; however, the real situati...
متن کامل