The influence of extratropical Atlantic Ocean region on wet and dry years in North-Northeastern Brazil
نویسنده
چکیده
The rainy season of north-Northeastern Brazil (NE), one of the tropical regions with the largest rainfall interannual variability, is associated with the Intertropical Convergence Zone (ITCZ) influence, which is located in the southermost position during this season (March-April-May). However, there is a large interannual variability in the ITCZ position, associated with atmospheric and oceanic anomalies, responsible for dry or wet years in the region. Besides the tropical Pacific Sea Surface Temperature (SST) anomalies and the Tropical Atlantic SST gradient influences on this variability, extratropical atmospheric influences are identified over the North and South Atlantic. Composites of cases with anomalous precipitation during the middle of the rainy season (April) indicate the El Niño-Southern Oscillation (ENSO) features and northern and southern Atlantic atmospheric anomalies in December-January-February (DJF). When El Niño and La Niña years are removed from the composites of dry and wet cases, respectively, the centers of action over the extratropical North Atlantic in DJF remain, and features of extratropical South Hemisphere become more evident. The tropical SST dipole is still present with inverted signs in each case, consistent with the NE precipitation anomalies. The main mode of variability in the Southern Hemisphere (South Annular Mode) and in the Northern Hemisphere (North Annular Mode) is present in DJF during the dry cases. These annular patterns occur in the composites of Northeast Brazil precipitation anomalies including or excluding ENSO years. Therefore, besides ENSO relations with SAM discussed in previous studies, another connection exists over the South Atlantic, linking anomalies between high and tropical latitudes. The precipitation anomalies over NE have contributions of the two extratropical Atlantic hemispheres regions. The atmospheric anomalies observed in the pre-rainy season can be a helpful tool in monitoring the North Northeastern Brazil rainfall variability.
منابع مشابه
Contributions of Atlantic Ocean to June-August Rainfall over Uganda and Western Kenya
This study investigates the contributions of Atlantic Ocean to June-August rainfall over Uganda and western Kenya (KU). The study has utilized the datasets including precipitation from the Global Precipitation Climatology Centre, North Atlantic Oscillation Index (NAOI), South Atlantic Ocean Dipole Index (SAODI), ERA-interim reanalysis, and the Atlantic Ocean Sea Surface Temperature (SST). Singu...
متن کاملTeleconnections between the Peruvian Central Andes and Northeast Brazil during Extreme Rainfall Events in Austral Summer
Extreme precipitation events in the Peruvian Andes have significant socioeconomic impacts, yet their atmospheric dynamics are poorly understood. Here austral summer (December–March) wet and dry spells and their continentaland large-scale teleconnections are analyzed using reanalysis, gridded, and in situ precipitation data. Dry and wet spells in the Peruvian Andes show a pervasive dipole patter...
متن کاملInfluence of atmospheric circulation patterns on dust transport during Harmattan Period in West Africa
This study has used TOMS AI as well as the reanalysis dataset of thirty-four years (1979-2012) to investigate the influence of atmospheric circulation on dust transport during the Harmattan period in West Africa, using Aerosol Index (AI) data, obtained from various satellite sensors. Changes in Inter-Tropical Discontinuity (ITD), Sea Surface Temperature (SST) over the Gulf of Guinea, and North ...
متن کاملAtmosphere and Ocean Origins of North American Droughts*
The atmospheric and oceanic causes of North American droughts are examined using observations and ensemble climate simulations. The models indicate that oceanic forcing of annual mean precipitation variability accounts for up to 40% of total variance in northeastern Mexico, the southern Great Plains, and the Gulf Coast states but less than 10% in central and eastern Canada. Observations and mod...
متن کاملCentury-scale causal relationships between global dry/wet conditions and the state of the Pacific and Atlantic Oceans
The Granger causality test is used to examine the effects of the El Niño–Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), and the North Atlantic Oscillation (NAO) on global dry/wet conditions. The results show robust relationships between dry/wet conditions and the ocean states, as assessed through a multi-index (standardized precipitation evapotranspiration index and standar...
متن کامل