2 00 6 Large Deviations for Non - Uniformly Expanding Maps
نویسنده
چکیده
We obtain large deviation results for non-uniformly expanding maps with non-flat singularities or criticalities and for partially hy-perbolic non-uniformly expanding attracting sets. That is, given a continuous function we consider its space average with respect to a physical measure and compare this with the time averages along orbits of the map, showing that the Lebesgue measure of the set of points whose time averages stay away from the space average tends to zero exponentially fast with the number of iterates involved. As easy by-products we deduce escape rates from subsets of the basins of physical measures for these types of maps. The rates of decay are naturally related to the metric entropy and pressure function of the system with respect to a family of equilibrium states.
منابع مشابه
1 8 Ju l 2 00 6 LARGE DEVIATIONS FOR NON - UNIFORMLY EXPANDING MAPS
We obtain large deviation bounds for non-uniformly expanding maps with non-flat singularities or criticalities and for partially hyperbolic non-uniformly expanding attracting sets. That is, given a continuous function we consider its space average with respect to a physical measure and compare this with the time averages along orbits of the map, showing that the Lebesgue measure of the set of p...
متن کاملLarge Deviations Bounds for Non-uniformly Hyperbolic Maps and Weak Gibbs Measures
We establish bounds for the measure of deviation sets associated to continuous observables with respect to weak Gibbs measures. Under some mild assumptions, we obtain upper and lower bounds for the measure of deviation sets of some non-uniformly expanding maps, including quadratic maps and robust multidimensional non-uniformly expanding local diffeomorphisms.
متن کاملJa n 20 06 LARGE DEVIATIONS FOR NON - UNIFORMLY EXPANDING MAPS
We obtain large deviation results for non-uniformly expanding maps with non-flat singularities or criticalities and for partially hy-perbolic non-uniformly expanding attracting sets. That is, given a continuous function we consider its space average with respect to a physical measure and compare this with the time averages along orbits of the map, showing that the Lebesgue measure of the set of...
متن کاملar X iv : m at h / 03 11 20 9 v 1 [ m at h . D S ] 1 3 N ov 2 00 3 DISSIPATION TIME AND DECAY OF CORRELATIONS
We consider the effect of noise on the dynamics generated by volume-preserving maps on a d-dimensional torus. The quantity we use to measure the irreversibility of the dynamics is the dissipation time. We focus on the asymptotic behaviour of this time in the limit of small noise. We derive universal lower and upper bounds for the dissipation time in terms of various properties of the map and it...
متن کاملN ov 2 00 3 DISSIPATION TIME AND DECAY OF CORRELATIONS
We consider the effect of noise on the dynamics generated by volume-preserving maps on a d-dimensional torus. The quantity we use to measure the irreversibility of the dynamics is the dissipation time. We focus on the asymptotic behaviour of this time in the limit of small noise. We derive universal lower and upper bounds for the dissipation time in terms of various properties of the map and it...
متن کامل