Analysis of childhood morbidity with geoadditive probit and latent variable model: a case study for Egypt.
نویسندگان
چکیده
This work applies geoadditive latent variable models to analyze the impact of risk factors and the spatial effects on the latent, unobservable variable "health status" or "frailty" of a child less than 5 years of age using the 2003 Demographic and Health survey (DHS) data from Egypt. Childhood diseases are a major cause of death of children in the developing world. In developing countries a quarter of infant and childhood mortality is related to childhood disease, particularly to diarrhea. Our case study is based on the 2003 Demographic and Health Survey for Egypt (EDHS). It provided data on the prevalence and treatment of common childhood disease such as diarrhea, cough, and fever, which are seen as symptoms or indicators of children's health status, causing increased morbidity and mortality. These causes are often associated with a number of risk factors, including inadequate antenatal care, lack of or inadequate vaccination, and environmental factors that affected the health of the child in early years, various bio-demographic and socioeconomic variables. In this work, we investigate the impact of such factors on childhood disease with flexible geoadditive models. These models allow us to analyze usual linear effects of covariates, nonlinear effects of continuous covariates, and small-area regional effects within a unified, semi-parametric Bayesian framework for modeling and inference. As a first step, we use separate geoadditive probit models the binary target variables for diarrhea, cough, and fever using covariate information from the EDHS. Based on these results, we then apply recently developed geoadditive latent variable models where the three observable disease variables are taken as indicators for the latent individual variable "health status" or "frailty" of a child. This modeling approach allows us to study the common influence of risk factors on individual frailties of children, thereby automatically accounting for association between diseases as indicators for health status.
منابع مشابه
The Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data
The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...
متن کاملGeoadditive Latent Variable Modelling of Child Morbidity and Malnutrition in Nigeria
SUMMARY Investigating the impact of important risk factors and geographical location on child morbidity and malnutrition is of high relevance for developing countries. Previous research has usually carried out separate regression analyses for certain diseases or types of malnutrition, neglecting possible association between them. Based on data from the Nigeria Demographic and Health Survey of 2...
متن کاملAssociations Between Nutritional Indicators Using Geoadditive Latent Variable Models with Application to Child Malnutrition in Nigeria
Childhood undernutrition is amongst the most serious health issues facing developing countries. It is an intrinsic indicator of well-being, but it is also associated with morbidity, mortality, impaired childhood development, and reduced labor productivity (Svedberg 1996; UNICEF 1998; Sen 1999) To assess nutritional status, the 2003 DHS obtained measurements of height and weight for all children...
متن کاملA Network data envelopment analysis model for supply chain performance evaluation: real case of Iranian pharmaceutical industry
Having a comprehensive evaluation model with reliable data is useful to improve performance of supply chain. In this paper, according to the nature of supply chain, a model is presented that able to evaluate the performance of the supply chain by a network data envelopment analysis model and by using the financial, intellectual capital (knowledge base), collaboration and responsiveness factors ...
متن کاملGender-based Differences in Associations between Attitude and Self-esteem with Smoking Behavior among Adolescents: A Secondary Analysis Applying Bayesian Nonparametric Functional Latent Variable Model
Background: Different patterns of gender-based relationships between attitude toward smoking and self-esteem with smoking behavior have reported. However, such associations may be much more complex than a simply supposed linear relationship. We aimed to propose a method of providing hand details on the total and gender-based scenarios of the relationships between attitude toward smoking and sel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The American journal of tropical medicine and hygiene
دوره 81 1 شماره
صفحات -
تاریخ انتشار 2009