I-Band Titin in Cardiac Muscle Is a Three-Element Molecular Spring and Is Critical for Maintaining Thin Filament Structure

نویسندگان

  • Wolfgang A. Linke
  • Diane E. Rudy
  • Thomas Centner
  • Mathias Gautel
  • Christian Witt
  • Siegfried Labeit
  • Carol C. Gregorio
چکیده

In cardiac muscle, the giant protein titin exists in different length isoforms expressed in the molecule's I-band region. Both isoforms, termed N2-A and N2-B, comprise stretches of Ig-like modules separated by the PEVK domain. Central I-band titin also contains isoform-specific Ig-motifs and nonmodular sequences, notably a longer insertion in N2-B. We investigated the elastic behavior of the I-band isoforms by using single-myofibril mechanics, immunofluorescence microscopy, and immunoelectron microscopy of rabbit cardiac sarcomeres stained with sequence-assigned antibodies. Moreover, we overexpressed constructs from the N2-B region in chick cardiac cells to search for possible structural properties of this cardiac-specific segment. We found that cardiac titin contains three distinct elastic elements: poly-Ig regions, the PEVK domain, and the N2-B sequence insertion, which extends approximately 60 nm at high physiological stretch. Recruitment of all three elements allows cardiac titin to extend fully reversibly at physiological sarcomere lengths, without the need to unfold Ig domains. Overexpressing the entire N2-B region or its NH(2) terminus in cardiac myocytes greatly disrupted thin filament, but not thick filament structure. Our results strongly suggest that the NH(2)-terminal N2-B domains are necessary to stabilize thin filament integrity. N2-B-titin emerges as a unique region critical for both reversible extensibility and structural maintenance of cardiac myofibrils.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Giant Protein Titin: A Major Player in Myocardial Mechanics, Signaling, and Disease The Dystrophin Glycoprotein Complex: Structure and Function in Cardiac and Skeletal Muscle Cardiac Myosin Binding Protein C: Its Role in Physiology and Disease

The sarcomere contains, in addition to thin and thick filaments, a filament composed of the giant protein titin (also known as connectin). Titin molecules anchor in the Z-disc and extend to the M-line region of the sarcomere. The majority of titin’s I-band region functions as a molecular spring. This spring maintains the precise structural arrangement of thick and thin filaments, and gives rise...

متن کامل

Contemporary Reviews in Cardiovascular Medicine Cardiac Titin A Multifunctional Giant

Titin constitutes the third myofilament of cardiac muscle, with a single giant polypeptide spanning from the Z disk to the M-band region of the sarcomere1 (Figure 1). The 1.0-MDa region in the I band is extensible and consists of tandemly arranged immunoglobulin-like domains that make up proximal (near the Z disk) and distal (near the A-I junction) segments, interspersed by the PEVK sequence (r...

متن کامل

The titin A-band rod domain is dispensable for initial thick filament assembly in zebrafish.

The sarcomeres of skeletal and cardiac muscle are highly structured protein arrays, consisting of thick and thin filaments aligned precisely to one another and to their surrounding matrix. The contractile mechanisms of sarcomeres are generally well understood, but how the patterning of sarcomeres is initiated during early skeletal muscle and cardiac development remains uncertain. Two of the mos...

متن کامل

Structural evidence for a possible role of reversible disulphide bridge formation in the elasticity of the muscle protein titin.

BACKGROUND The giant muscle protein titin contributes to the filament system in skeletal and cardiac muscle cells by connecting the Z disk and the central M line of the sarcomere. One of the physiological functions of titin is to act as a passive spring in the sarcomere, which is achieved by the elastic properties of its central I band region. Titin contains about 300 domains of which more than...

متن کامل

Protein Kinase A Phosphorylates Cardiac-Specific N2B Domain of Titin and Reduces Passive Tension in Rat Cardiac Myocytes

b-Adrenergic stimulation of cardiac muscle activates protein kinase A (PKA), which is known to phosphorylate proteins on the thin and thick filaments of the sarcomere. Cardiac muscle sarcomeres contain a third filament system composed of titin, and in this study, we demonstrate that titin is also phosphorylated by the b-adrenergic pathway. Titin phosphorylation was observed after b-receptor sti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 146  شماره 

صفحات  -

تاریخ انتشار 1999