Feedback System Protects Inner Ear

نویسنده

  • Richard Robinson
چکیده

Rock 'n' roll sounds best turned up loud, but as hundreds of aging rockers (and millions of their aging fans) are discovering, the cost of all that glorious noise is hearing loss and tinnitus. And it's not just loud music—our ears are daily assaulted by the roar of the jet engine, the shriek of the power tool, the blare of the car horn, and the pounding of the jackhammer. In most cases, it seems that our only protection is to close the window or cover our ears. But, according to new research by Taranda et al., it turns out we have another, quite ancient defense against these modern assaults—a way to turn down the noise is wired right into our hearing systems. While the discovery can't bring back your lost hearing, it may lead to ways to better protect what you have left. To understand the discovery, it helps to remember how the ear processes sound. Pressure waves in the air vibrate the ear drum, pushing and pulling on three tiny bones just beyond them, which transmit these vibrations to fluid within the spiral-shaped cochlea. That fluid lies atop a sheet of cells, and the fluid's motion distorts cilia (hairs), which protrude from the tips of those cells. The cells are of two kinds, called inner and outer hair cells. Inner hair cells are connected to the neurons of the auditory nerve, and when cilia on inner hair cells are distorted, they trigger those neurons to fire. These neuronal signals travel to the brain, and we hear the music. Outer hair cells have a different function, based on a property unique to them: When their cilia are distorted by fluid vibrations, the cells elongate and shorten in length. Because they are attached to one side of the fluid chamber, their movements amplify the very vibration that set them in motion, increasing the sensitivity of the hearing apparatus, especially to the softest sounds. Outer hair cells have another curious property. They, too, make contact with neurons, but they don't send messages—they receive them from the brain. These incoming neurons fire in response to loud noises, releasing the neurotransmitter acetylcholine. This molecule binds to receptors on the outer hair cells, reducing their ability to change in length, thereby diminishing fluid vibration and cochlear amplification. The existence of this auditory feedback loop has been known for decades, and its cellular mechanisms for several …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of replacing cochlea contour with inner ear contour on cochlea dose-volume calculations in conventional 2 dimensional and conformal 3 dimensional radiotherapy of brain

Introduction: Sensorineural hearing loss (SNHL) is one of the possible complications of radiotherapy treatment of brain tumors. The auditory system of patients with brain tumors often is placed inside of radiation field and receives a significant amount of radiation dose resulting in hearing loss. The purpose of this study was to compare contouring and delivery dose to cochlea...

متن کامل

Predicting vulnerability to acoustic injury with a noninvasive assay of olivocochlear reflex strength.

Permanent noise-induced damage to the inner ear is a major cause of hearing impairment, arising from exposures occurring during both work- and pleasure-related activities. Vulnerability to noise-induced hearing loss is highly variable: some have tough, whereas others have tender ears. This report documents, in an animal model, the efficacy of a simple nontraumatic assay of normal ear function i...

متن کامل

Autoimmune Inner Ear Disease- A Clinical Viewpoint

Recent developments in medicine have given us a better insight into a group of disorders known as autoimmune diseases. In particular, advances have occurred in our understanding of the Autoimmune Inner Ear Disease (AIED). In this article, the authors review the different postulated theories in the pathogenesis of this disease. The clinical presentation, the available para-clinical diagnostic to...

متن کامل

Hydrogen protects auditory hair cells from cisplatin-induced free radicals Running title: Hydrogen protects cochlea from cisplatin ROS

Cisplatin is a widely used chemotherapeutic agent for the treatment of various malignancies. However, its maximum dose is often limited by severe ototoxicity. Cisplatin ototoxicity may require the production of reactive oxygen species (ROS) in the inner ear by activating enzymes specific to the cochlea. Molecular hydrogen was recently established as an antioxidant that selectively reduces ROS, ...

متن کامل

Musicianship enhances ipsilateral and contralateral efferent gain control to the cochlea.

Human hearing sensitivity is easily compromised with overexposure to excessively loud sounds, leading to permanent hearing damage. Consequently, finding activities and/or experiential factors that distinguish "tender" from "tough" ears (i.e., acoustic vulnerability) would be important for identifying people at higher risk for hearing damage. To regulate sound transmission and protect the inner ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS Biology

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2009