Vegetally localized Xenopus trim36 regulates cortical rotation and dorsal axis formation.

نویسندگان

  • Tawny N Cuykendall
  • Douglas W Houston
چکیده

Specification of the dorsoventral axis in Xenopus depends on rearrangements of the egg vegetal cortex following fertilization, concomitant with activation of Wnt/beta-catenin signaling. How these processes are tied together is not clear, but RNAs localized to the vegetal cortex during oogenesis are known to be essential. Despite their importance, few vegetally localized RNAs have been examined in detail. In this study, we describe the identification of a novel localized mRNA, trim36, and characterize its function through maternal loss-of-function experiments. We find that trim36 is expressed in the germ plasm and encodes a ubiquitin ligase of the Tripartite motif-containing (Trim) family. Depletion of maternal trim36 using antisense oligonucleotides results in ventralized embryos and reduced organizer gene expression. We show that injection of wnt11 mRNA rescues this effect, suggesting that Trim36 functions upstream of Wnt/beta-catenin activation. We further find that vegetal microtubule polymerization and cortical rotation are disrupted in trim36-depleted embryos, in a manner dependent on Trim36 ubiquitin ligase activity. Additionally, these embryos can be rescued by tipping the eggs 90 degrees relative to the animal-vegetal axis. Taken together, our results suggest a role for Trim36 in controlling the stability of proteins regulating microtubule polymerization during cortical rotation, and subsequently axis formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maternal Dead-End1 is required for vegetal cortical microtubule assembly during Xenopus axis specification.

Vertebrate axis specification is an evolutionarily conserved developmental process that relies on asymmetric activation of Wnt signaling and subsequent organizer formation on the future dorsal side of the embryo. Although roles of Wnt signaling during organizer formation have been studied extensively, it is unclear how the Wnt pathway is asymmetrically activated. In Xenopus and zebrafish, the W...

متن کامل

Dynamic microtubules at the vegetal cortex predict the embryonic axis in zebrafish.

In zebrafish, as in many animals, maternal dorsal determinants are vegetally localized in the egg and are transported after fertilization in a microtubule-dependent manner. However, the organization of early microtubules, their dynamics and their contribution to axis formation are not fully understood. Using live imaging, we identified two populations of microtubules, perpendicular bundles and ...

متن کامل

Move it or lose it: axis specification in Xenopus.

A long-standing question in developmental biology is how amphibians establish a dorsoventral axis. The prevailing view has been that cortical rotation is used to move a dorsalizing activity from the bottom of the egg towards the future dorsal side. We review recent evidence that kinesin-dependent movement of particles containing components of the Wnt intracellular pathway contributes to the for...

متن کامل

The Xenopus homologue of Bicaudal-C is a localized maternal mRNA that can induce endoderm formation.

In Xenopus, zygotic transcription starts 6 hours after fertilization at the midblastula transition and therefore the first steps in embryonic development are regulated by maternally inherited proteins and mRNAs. While animal-vegetal polarity is already present in the oocyte, the dorsoventral axis is only established upon fertilization by the entry of the sperm and the subsequent rotation of the...

متن کامل

Activation of dorsal development by contact between the cortical dorsal determinant and the equatorial core cytoplasm in eggs of Xenopus laevis.

In eggs of Xenopus laevis, dorsal development is activated on the future dorsal side by cortical rotation, after fertilization. The immediate effect of cortical rotation is probably the transport of a dorsal determinant from the vegetal pole to the equatorial region on the future dorsal side. However, the identity and action of the dorsal determinant remain problematic. In the present experimen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 136 18  شماره 

صفحات  -

تاریخ انتشار 2009