LOGOS: a modular Bayesian model for de novo motif detection

نویسندگان

  • Eric P. Xing
  • Wei Wu
  • Michael I. Jordan
  • Richard M. Karp
چکیده

The complexity of the global organization and internal structures of motifs in higher eukaryotic organisms raises significant challenges for motif detection techniques. To achieve successful de novo motif detection it is necessary to model the complex dependencies within and among motifs and incorporate biological prior knowledge. In this paper, we present LOGOS, an integrated LOcal and GlObal motif Sequence model for biopolymer sequences, which provides a principled framework for developing, modularizing, extending and computing expressive motif models for complex biopolymer sequence analysis. LOGOS consists of two interacting submodels: HMDM, a local alignment model capturing biological prior knowledge and positional dependence within the motif local structure; and HMM, a global motif distribution model modeling frequencies and dependencies of motif occurrences. Model parameters can be fit using training motifs within an empirical Bayesian framework. A variational EM algorithm is developed for de novo motif detection. LOGOS improves over existing models that ignore biological priors and dependencies in motif structures and motif occurrences, and demonstrates superior performance on both semi-realistic test data and cis-regulatory sequences from yeast and Drosophila sequences with regard to sensitivity, specificity, flexibility and extensibility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A modular Bayesian model for de novo motif detection

The complexity of the global organization and internal structure of motifs in higher eukaryotic organisms raises significant challenges for motif detection techniques. To achieve successful de novo motif detection it is necessary to model the complex dependencies within and among motifs and incorporate biological prior knowledge. In this paper, we present LOGOS, an integrated LOcal and GlObal m...

متن کامل

The XXmotif web server for eXhaustive, weight matriX-based motif discovery in nucleotide sequences

The discovery of regulatory motifs enriched in sets of DNA or RNA sequences is fundamental to the analysis of a great variety of functional genomics experiments. These motifs usually represent binding sites of proteins or non-coding RNAs, which are best described by position weight matrices (PWMs). We have recently developed XXmotif, a de novo motif discovery method that is able to directly opt...

متن کامل

Capturing characteristic structural features for motif detection using a hierarchical Bayesian Markovian model

The detection of novel DNA motifs in the regulatory regions of genes provides important information regarding the organization and functional mechanisms of gene regulation. A wealth of biological evidence suggest that biological motifs are more than just conserved nucleotide strings but may have common structural properties underlying the seemingly diverse consensus sequences, such as character...

متن کامل

CisModule: de novo discovery of cis-regulatory modules by hierarchical mixture modeling.

The regulatory information for a eukaryotic gene is encoded in cis-regulatory modules. The binding sites for a set of interacting transcription factors have the tendency to colocalize to the same modules. Current de novo motif discovery methods do not take advantage of this knowledge. We propose a hierarchical mixture approach to model the cis-regulatory module structure. Based on the model, a ...

متن کامل

Similarity Analysis between Transcription Factor Binding Sites by Bayesian Hypothesis Test

Transcription factor binding sites (TFBS) in promoter sequences of higher eukaryotes are commonly modeled using position frequency matrices (PFM). The ability to compare PFMs representing binding sites is especially important for de novo sequence motif discovery, where it is desirable to compare putative matrices to one another and to known matrices. We propose to identify and group similar pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings. IEEE Computer Society Bioinformatics Conference

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2003