Global well-posedness and inviscid limit for the modified Korteweg-de Vries-Burgers equation

نویسنده

  • Hua Zhang
چکیده

Considering the Cauchy problem for the modified Korteweg-de Vries-Burgers equation ut + uxxx + ǫ|∂x| u = 2(u)x, u(0) = φ, where 0 < ǫ, α ≤ 1 and u is a real-valued function, we show that it is uniformly globally well-posed in Hs (s ≥ 1) for all ǫ ∈ (0, 1]. Moreover, we prove that for any s ≥ 1 and T > 0, its solution converges in C([0, T ]; Hs) to that of the MKdV equation if ǫ tends to 0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global well posedness and inviscid limit for the Korteweg-de Vries-Burgers equation

Considering the Cauchy problem for the Korteweg-de Vries-Burgers equation ut + uxxx + ǫ|∂x| u+ (u)x = 0, u(0) = φ, where 0 < ǫ, α ≤ 1 and u is a real-valued function, we show that it is globally well-posed in Hs (s > sα), and uniformly globally well-posed in H s (s > −3/4) for all ǫ ∈ (0, 1). Moreover, we prove that for any T > 0, its solution converges in C([0, T ]; Hs) to that of the KdV equa...

متن کامل

On the Well Posedness of the Modified Korteweg-de Vries Equation in Weighted Sobolev Spaces

We study local and global well posedness of the k-generalized Korteweg-de Vries equation in weighted Sobolev spaces Hs(R) ∩ L2(|x|2rdx).

متن کامل

Global well-posedness of korteweg-de vries equation in ...

We prove that the Korteweg-de Vries initial-value problem is globally well-posed in H−3/4(R) and the modified Korteweg-de Vries initial-value problem is globally well-posed in H1/4(R). The new ingredient is that we use directly the contraction principle to prove local well-posedness for KdV equation at s = −3/4 by constructing some special resolution spaces in order to avoid some ’logarithmic d...

متن کامل

A Novel Approach for Korteweg-de Vries Equation of Fractional Order

In this study, the localfractional variational iterationmethod (LFVIM) and the localfractional series expansion method (LFSEM) are utilized to obtain approximate solutions for Korteweg-de Vries equation (KdVE) within local fractionalderivative operators (LFDOs). The efficiency of the considered methods is illustrated by some examples. The results reveal that the suggested algorithms are very ef...

متن کامل

Boundary control of the Korteweg-de Vries-Burgers equation: further results on stabilization and well-posedness, with numerical demonstration

We consider the Korteweg–de Vries–Burgers (KdVB) equation on the interval [0,1]. Motivated by simulations resulting in modest decay rates with recently proposed control laws by Liu and Krstic which keeps some of the boundary conditions as homogeneous, we propose a strengthened set of feedback boundary conditions. We establish stability properties of the closed-loop system, prove well-posedness ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008