On Symplectic and Multisymplectic Schemes for the KdV Equation

نویسندگان

  • Uri M. Ascher
  • Robert I. McLachlan
چکیده

We examine some symplectic and multisymplectic methods for the notorious Korteweg–de Vries equation, with the question whether the added structure preservation that these methods offer is key in providing high quality schemes for the long time integration of nonlinear, conservative partial differential equations. Concentrating on 2nd order discretizations, several interesting schemes are constructed and studied. Our essential conclusions are that it is possible to design very stable, conservative difference schemes for the nonlinear, conservative KdV equation. Among the best of such schemes are methods which are symplectic or multisymplectic. Semi-explicit, symplectic schemes can be very effective in many situations. Compact box schemes are effective in ensuring that no artificial wiggles appear in the approximate solution. A family of box schemes is constructed, of which the multisymplectic box scheme is a prominent member, which are particularly stable on coarse space-time grids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-symplectic Fourier Pseudospectral Method for a Higher Order Wave Equation of Kdv Type

The higher order wave equation of KdV type, which describes many important physical phenomena, has been investigated widely in last several decades. In this work, multisymplectic formulations for the higher order wave equation of KdV type are presented, and the local conservation laws are shown to correspond to certain well-known Hamiltonian functionals. The multi-symplectic discretization of e...

متن کامل

Numerical implementation of the multisymplectic Preissman scheme and its equivalent schemes

We analyze the multisymplectic Preissman scheme for the KdV equation with the periodic boundary condition and show that the unconvergence of the widely-used iterative methods to solve the resulting nonlinear algebra system of the Preissman scheme is due to the introduced potential function. A artificial numerical condition is added to the periodic boundary condition. The added boundary conditio...

متن کامل

Geometric Numerical Schemes for the Kdv Equation

Geometric discretizations that preserve certain Hamiltonian structures at the discrete level has been proven to enhance the accuracy of numerical schemes. In particular, numerous symplectic and multi-symplectic schemes have been proposed to solve numerically the celebrated Korteweg-de Vries (KdV) equation. In this work, we show that geometrical schemes are as much robust and accurate as Fourier...

متن کامل

Multi-symplectic Runge–Kutta-type methods for Hamiltonian wave equations

The non-linear wave equation is taken as a model problem for the investigation. Different multisymplectic reformulations of the equation are discussed. Multi-symplectic Runge–Kutta methods and multi-symplectic partitioned Runge–Kutta methods are explored based on these different reformulations. Some popular and efficient multi-symplectic schemes are collected and constructed. Stability analyses...

متن کامل

Multisymplectic box schemes and the Korteweg–de Vries equation

We develop and compare some geometric integrators for the Korteweg-de Vries equation, especially with regard to their robustness for large steps in space and time, ∆x and ∆t, and over long times. A standard, semi-explicit, symplectic finite difference scheme is found to be fast and robust. However, in some parameter regimes such schemes are susceptible to developing small wiggles. At the same i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2005