Cryptanalysis of the Speck Family of Block Ciphers

نویسندگان

  • Farzaneh Abed
  • Eik List
  • Stefan Lucks
  • Jakob Wenzel
چکیده

Simon and Speck are two families of ultra-lightweight block ciphers which were announced by the U.S. National Security Agency in June 2013. Yet, the specification discusses only the design and the performance of both cipher families and the task of analyzing their security has been left to the were proposed by the U.S. National Security Agency in June 2013. Yet, the specification paper discusses only the design and the performance of both cipher families, the task of analyzing their security has been left to the research community. In this paper we present conventional differential as well as rectangle attacks for almost all members of the Speck cipher family, where we target up to 11/22, 12/23, 14/16, 15/29, and 18/34 rounds of the 32-, 48-, 64-, 96-, and 128-bit version, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Differential Cryptanalysis of Round-Reduced Speck

Simon and Speck are families of lightweight block ciphers designed by the U.S. National Security Agency and published in 2013. Each of the families contains 10 variants, supporting a wide range of block and key sizes. Since the publication of Simon and Speck, several research papers analyzed their security using various cryptanalytic techniques. The best previously published attacks on all the ...

متن کامل

Impossible Differential Cryptanalysis of Reduced-Round Midori64 Block Cipher (Extended Version)

Impossible differential attack is a well-known mean to examine robustness of block ciphers. Using impossible differ- ential cryptanalysis, we analyze security of a family of lightweight block ciphers, named Midori, that are designed considering low energy consumption. Midori state size can be either 64 bits for Midori64 or 128 bits for Midori128; however, both vers...

متن کامل

Cryptanalysis of the SIMON Family of Block Ciphers

Recently, the U.S National Security Agency has published the specifications of two families of lightweight block ciphers, SIMON and SPECK, on ePrint [2]. The ciphers are developed with optimization towards both hardware and software in mind. While the specification paper discusses design requirements and performance of the presented lightweight ciphers thoroughly, no security assessment is give...

متن کامل

Automatic Search for the Best Trails in ARX: Application to Block Cipher Speck

We propose the first adaptation of Matsui’s algorithm for finding the best differential and linear trails to the class of ARX ciphers. It is based on a branch-and-bound search strategy, does not use any heuristics and returns optimal results. The practical application of the new algorithm is demonstrated on reduced round variants of block ciphers from the Speck family. More specifically, we rep...

متن کامل

Differential Analysis on Simeck and SIMON with Dynamic Key-guessing Techniques

The Simeck family of lightweight block ciphers was proposed in CHES 2015 which combines the good design components from NSA designed ciphers SIMON and SPECK. Dynamic key-guessing techniques were proposed by Wang et al. to greatly reduce the key space guessed in differential cryptanalysis and work well on SIMON. In this paper, we implement the dynamic key-guessing techniques in a program to auto...

متن کامل

A new method for accelerating impossible differential cryptanalysis and its application on LBlock

Impossible differential cryptanalysis, the extension of differential cryptanalysis, is one of the most efficient attacks against block ciphers. This cryptanalysis method has been applied to most of the block ciphers and has shown significant results. Using structures, key schedule considerations, early abort, and pre-computation are some common methods to reduce complexities of this attack. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013