A Vanishing Theorem for Oriented Intersection Multiplicities
نویسندگان
چکیده
Let A be a regular local ring containing 1/2, which is either equicharacteristic, or is smooth over a d.v.r. of mixed characteristic. We prove that the product maps on derived Grothendieck-Witt groups of A satisfy the following property: given two elements with supports which do not intersect properly, their product vanishes. This gives an analogue for “oriented intersection multiplicities” of Serre’s vanishing result for intersection multiplicities. It also suggests a Vanishing Conjecture for arbitrary regular local rings containing 1/2, which is analogous to Serre’s (which was proved independently by Roberts, and Gillet and Soulé).
منابع مشابه
A vanishing theorem for oriented intersection multiplicites
Let A be a regular local ring containing 1/2, which is either equicharacteristic, or is smooth over a d.v.r. of mixed characteristic. We prove that the product maps on derived Grothendieck-Witt groups of A satisfy the following property: given two elements with supports which do not intersect properly, their product vanishes. This gives an analogue for “oriented intersection multiplicites” of S...
متن کاملVanishing of Ext-Functors and Faltings’ Annihilator Theorem for relative Cohen-Macaulay modules
et be a commutative Noetherian ring, and two ideals of and a finite -module. In this paper, we have studied the vanishing and relative Cohen-Macaulyness of the functor for relative Cohen-Macauly filtered modules with respect to the ideal (RCMF). We have shown that the for relative Cohen-Macaulay modules holds for any relative Cohen-Macauly module with respect to with ........
متن کاملOn the Hopf Index Theorem and the Hopf Invariant
Let ƒ: N —• M be a C°° map of oriented compact manifolds, and let L be an oriented closed submanifold of codimension q > 1 in M. If w is a closed form Poincaré dual to L, we show that f~L, with multiplicities counted, is Poincaré dual to ƒ *w in N and is even meaningful on a "secondary" level. This leads to generalized versions of the Hopf invariant, the Hopf index theorem and the Bezout theore...
متن کاملExtension of Krull's intersection theorem for fuzzy module
In this article we introduce $mu$-filtered fuzzy module with a family of fuzzy submodules. It shows the relation between $mu$-filtered fuzzy modules and crisp filtered modules by level sets. We investigate fuzzy topology on the $mu$-filtered fuzzy module and apply that to introduce fuzzy completion. Finally we extend Krull's intersection theorem of fuzzy ideals by using concept $mu$-adic comp...
متن کاملCurves in P and Bezout’s Theorem
In this paper we introduce projective geometry and one of its important theorems. We begin by defining projective space in terms of homogenous coordinates. Next, we define homgenous curves, and describe a few important properties they have. We then introduce Bezout’s Theorem, which asserts that the number of intersection points of two homogenous curves is less than or equal to the product of th...
متن کامل