SAT-based termination analysis using monotonicity constraints over the integers

نویسندگان

  • Michael Codish
  • Igor Gonopolskiy
  • Amir M. Ben-Amram
  • Carsten Fuhs
  • Jürgen Giesl
چکیده

We describe an algorithm for proving termination of programs abstracted to systems of monotonicity constraints in the integer domain. Monotonicity constraints are a nontrivial extension of the well-known size-change termination method. While deciding termination for systems of monotonicity constraints is PSPACE complete, we focus on a well-defined and significant subset, which we call MCNP (for “monotonicity constraints in NP”), designed to be amenable to a SAT-based solution. Our technique is based on the search for a special type of ranking function defined in terms of bounded differences between multisets of integer values. We describe the application of our approach as the back end for the termination analysis of Java Bytecode. At the front end, systems of monotonicity constraints are obtained by abstracting information, using two different termination analyzers: AProVE and COSTA. Preliminary results reveal that our approach provides a good trade-off between precision and cost of analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Technical Communications of the 27th International Conference on Logic Programming (ICLP'11)

Diagnosis of Timed Concurrent Constraint programs Marco Comini, Laura Titolo and Alicia Villanueva Parallel Backtracking with Answer Memoing for Independent And-Parallelism Pablo Chico De Guzmán, Amadeo Casas, Manuel Carro and Manuel Hermenegildo SAT-Based Termination Analysis Using Monotonicity Constraints over the Integers Amir M. Ben-Amram, Michael Codish, Carsten Fuhs, Jürgen Giesl and Igor...

متن کامل

Monotonicity Constraints for Termination in the Integer Domain

Size-Change Termination (SCT) is a method of proving program termination based on the impossibility of infinite descent. To this end we use a program abstraction in which transitions are described by monotonicity constraints over (abstract) variables. When only constraints of the form x > y and x ≥ y are allowed, we have size-change graphs. In the last decade, both theory and practice have evol...

متن کامل

Testing for Termination with Monotonicity Constraints

Termination analysis is often performed over the abstract domains of monotonicity constraints or of size change graphs. First, the transition relation for a given program is approximated by a set of descriptions. Then, this set is closed under a composition operation. Finally, termination is determined if all of the idempotent loop descriptions in this closure have (possibly different) ranking ...

متن کامل

Size-Change Termination, Monotonicity Constraints and Ranking Functions

Size-Change Termination (SCT) is a method of proving program termination based on the impossibility of infinite descent. To this end we may use a program abstraction in which transitions are described by monotonicity constraints over (abstract) variables. Size-change graphs are a subclass where only constraints of the form x > y and x ≥ y are allowed. Both theory and practice are now more evolv...

متن کامل

EEH: AGGH-like public key cryptosystem over the eisenstein integers using polynomial representations

GGH class of public-key cryptosystems relies on computational problems based on the closest vector problem (CVP) in lattices for their security. The subject of lattice based cryptography is very active and there have recently been new ideas that revolutionized the field. We present EEH, a GGH-Like public key cryptosystem based on the Eisenstein integers Z [ζ3] where ζ3 is a primitive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • TPLP

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2011