Atomic Latin Squares of Order Eleven

نویسندگان

  • Barbara M. Maenhaut
  • Ian M. Wanless
چکیده

A Latin square is pan-Hamiltonian if the permutation which defines row i relative to row j consists of a single cycle for every i 61⁄4 j. A Latin square is atomic if all of its conjugates are pan-Hamiltonian. We give a complete enumeration of atomic squares for order 11, the smallest order for which there are examples distinct from the cyclic group. We find that there are seven main classes, including the three that were previously known. A perfect 1factorization of a graph is a decomposition of that graph into matchings such that the union of any two matchings is a Hamiltonian cycle. Each pan-Hamiltonian Latin square of order n describes a perfect 1-factorization of Kn;n, and vice versa. Perfect 1-factorizations of Kn;n can be constructed from a perfect 1-factorization of Knþ1. Six of the seven main classes of atomic squares of order 11 can be obtained in this way. For each atomic square of order 11, we find the largest set of Mutually Orthogonal Latin Squares (MOLS) involving that square. We discuss algorithms for counting orthogonal mates, and discover the number of orthogonal mates possessed by the cyclic squares of orders up to 11 and by Parker’s famous turn-square. We find that the number of atomic orthogonal mates possessed by a Latin square is not a main class invariant. We also define a new sort of Latin square, called a pairing square, which is mapped to its transpose by an involution acting on the symbols. We show that pairing squares are often orthogonal mates for symmetric Latin squares. Finally, we discover connections between our atomic squares and Franklin’s diagonally cyclic self-orthogonal squares, and we correct a theorem of Longyear which uses tactical representations to identify self-orthogonal Latin squares in the same main class as a given Latin square. # 2003 Wiley Periodicals, Inc. J Combin Designs 12: 12–34, 2004

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atomic Latin Squares based on Cyclotomic Orthomorphisms

Atomic latin squares have indivisible structure which mimics that of the cyclic groups of prime order. They are related to perfect 1-factorisations of complete bipartite graphs. Only one example of an atomic latin square of a composite order (namely 27) was previously known. We show that this one example can be generated by an established method of constructing latin squares using cyclotomic or...

متن کامل

Diagonally cyclic latin squares

A latin square of order n possessing a cyclic automorphism of order n is said to be diagonally cyclic because its entries occur in cyclic order down each broken diagonal. More generally, we consider squares possessing any cyclic automorphism. Such squares will be named after Parker, in recognition of his seminal contribution to the study of orthogonal latin squares. Our primary aim is to survey...

متن کامل

Perfect Factorisations of Bipartite Graphs and Latin Squares Without Proper Subrectangles

A Latin square is pan-Hamiltonian if every pair of rows forms a single cycle. Such squares are related to perfect 1-factorisations of the complete bipartite graph. A square is atomic if every conjugate is pan-Hamiltonian. These squares are indivisible in a strong sense – they have no proper subrectangles. We give some existence results and a catalogue for small orders. In the process we identif...

متن کامل

Symmetries That Latin Squares Inherit from 1-Factorizations

A 1-factorization of a graph is a decomposition of the graph into edge disjoint perfect matchings. There is a well-known method, which we call the K-construction, for building a 1-factorization of Kn;n from a 1-factorization of Knþ1. The 1-factorization of Kn;n can be written as a latin square of order n. The K-construction has been used, among other things, to make perfect 1-factorizations, su...

متن کامل

Cycle Switches in Latin Squares

Cycle switches are the simplest changes which can be used to alter latin squares, and as such have found many applications in the generation of latin squares. They also provide the simplest examples of latin interchanges or trades in latin square designs. In this paper we construct graphs in which the vertices are classes of latin squares. Edges arise from switching cycles to move from one clas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003