Background Subtraction via Robust Dictionary Learning

نویسندگان

  • Cong Zhao
  • Xiaogang Wang
  • Wai-kuen Cham
چکیده

We propose a learning-based background subtraction approach based on the theory of sparse representation and dictionary learning. Our method makes the following two important assumptions: (1) the background of a scene has a sparse linear representation over a learned dictionary; (2) the foreground is “sparse” in the sense that majority pixels of the frame belong to the background. These two assumptions enable our method to handle both sudden and gradual background changes better than existing methods. As discussed in the paper, the way of learning the dictionary is critical to the success of background modeling in our method. To build a correct background model when training samples are not foreground-free, we propose a novel robust dictionary learning algorithm. It automatically prunes foreground pixels out as outliers at the learning stage. Experiments in both qualitative and quantitative comparisons with competing methods demonstrate the obtained robustness against background changes and better performance in foreground segmentation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Kronecker Component Analysis

Dictionary learning and component analysis models are fundamental in learning compact representations that are relevant to a given task (feature extraction, dimensionality reduction, denoising, etc.). The model complexity is encoded by means of specific structure, such as sparsity, low-rankness, or nonnegativity. Unfortunately, approaches like K-SVD that learn dictionaries for sparse coding via...

متن کامل

Online Robust Low-Rank Tensor Learning

The rapid increase of multidimensional data (a.k.a. tensor) like videos brings new challenges for low-rank data modeling approaches such as dynamic data size, complex high-order relations, and multiplicity of low-rank structures. Resolving these challenges require a new tensor analysis method that can perform tensor data analysis online, which however is still absent. In this paper, we propose ...

متن کامل

Pose Estimation From Occluded Images

We propose a learning-based framework for inferring the 3D pose of a person from monocular image sequences. We generate a silhouette from each input image via a robust background subtraction algorithm, and compute the corresponding shape context descriptor using the shape context algorithm. We compute the weighted average of neighbor poses in a database to estimate the positions of different bo...

متن کامل

A Recursive Kernel Density Learning Framework for Robust Foreground Object Segmentation

Dynamic video segmentation is an important research topic in computer vision. In this paper, we present a novel recursive Kernel Density Learning framework based video segmentation method. In the algorithm, local maximum in the density functions is approximated recursively via a mean shift method firstly. Via a proposed thresholding scheme, components and parameters in the mixture Gaussian dist...

متن کامل

Speech Enhancement using Adaptive Data-Based Dictionary Learning

In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EURASIP J. Image and Video Processing

دوره 2011  شماره 

صفحات  -

تاریخ انتشار 2011